ELEMENTS OF
ANALYTICAL GEOMETRY

BEY A\

(EORGE A. GIBSON, MA, LED.
PROFESS0OR OF MATHEMATIOS [N THE UNIVERSITY'(BI;\L:!’SGOW .
\"

AND

P, PINKERTON, M A DSC

RECTOR OT TINE HIOH &%.ﬁOUL OF GLARGOW

N
™)
Q"v
.»{
~
A ’
A\
“ *
> N
W/
O
O'.'
Y
\s.'
.’\
K
R
N
™\ . '

MACMILLAN AND CO., LIMITED
ST. MARTIN’S STREET, LONDON
1944




@

)
N
«‘3}

COPYRQI‘
*

Fir tion 1911,
Reprinted 1912, 1920, 1824, 1929, 1932, 1944,

PRINTED IN GREAT BRITAIN



| o @
- WILLIAM JACK, M.A, LL 0.8,
EMERITUS PROFESSOR OF MATTHENMATICS TN THE
UKIVERSITY OF GOW ’

FROM TWO m@z SIUDENTS



PREFACE. .
A\

: A
Ix the preparation of this text-book on Analytical Gega:r';‘e\t'ry
it has been our aim not merely fo give an ﬂnalyi;i@s:l trent-
ment of curves of the sccond degree, bub alsp poapply the
methods of elementary algebra to the tracing of curves of
higher degrees. Many of the curves ’ujaq\aﬁ}y classed as
Higher Plane Curves and discussed 4D, freatises on the
Caleulus ave easily handled by elethentary wethods, and
give the beginner a much be’sfs@w';kﬁowledg'e of the value
of analysis than can be deriyed from a study of the cume
gections alone. An clemenfary knowledge of the methods
of curve tracing is in fatt a necessary preliminary to any
disenssion of Highe!;_{the Curves that is based on Higher
Algebra and the Thfinitesimal Caleulus, and seerns to come

© properly withint the scope of an introduction to Analytical
Geomatry. N . ' '

It ma}(pa“useful to indicate the general lines on which
the bbok’ has been constructed and to state briefly the
res‘sc}rﬁ for the order adopted. :
~\Chapters L-TX. treat of the straight line, the cirele and

_\s6me simple curves that can be readily sketched from their-
definitions without recourse to elaborate algebraical analysis.
Graphical work is now so common in the early stages of
every mathematical course that it is fair to assume that
every reader has some. previous acquaintance with the -
graphieal interpretation of equations of a simple type.
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The early chapters are therefore designed to make the
student guite famillar with fundamental formulae, such as
the Section, Distance and Gradient Formulae, which oceur
so fréquently in all applications, and to train him in the
geometrical interpretation of “formulae and equations hy(\
applying them to familiar and easily drawn eurves. Indeed.
the analytical treatment of the straight line and cifel&ds
necessary, not so much for the geometrical resul{sias for
the acquisition of facility in the use and interpretation of
formulae ; only by such practice can the beginmer learn to
sec the geometry behind the analysism\These chapters
inelude. a discussion of Harmonic Ranges and Penciis and
of the usual theorems on the Cigele, including Coaxal
systems. The ninth chapter conbaids the equations of the
Conchoid, the Cissoid and the Witeh, with the usual applica-
tions fo the triseetion of an“angle and the duplication of
the cube; experience pro¥es that these curves are of real
interest and stimulate, ptipils to further study. A number
of worked example€ on loci and two sets of Miscellaneous
Examples conc%lge this seetion.
Chapters X-XVIL discuss the graphical representation
" of equatio:gsl “The aim of these sections is to enable the
student, 40 sketeh pretty rapidly the forms of the curves
reprosohted by algebraic equations that are not of very
gt}%\ﬁcated types; his work on-the equations of loci in the
‘:e@rlier parts of the book will have suggested the necessity
O of this study. Considerable stress is laid on the method of
) Buccessive Approximations, and we believe the method to
be both so simple and so fruitful that no apology is needed
fi?r t.he.spa,ce given fo its discussion. In the course of this
discussion we have felt obliged to treat some parts of
element.ary algebra th:.a,t are often imperfectly grasped by
the bfagin.l_aer, such as discriminants, burning values, repeated
and 1nﬁ..mt.e -roots, and have been led by a simple and
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natural process to a statement of the derivatives of the
simpler algebraie funetions. We hope that. the revisal of
work which is treated with more or less fullness in most
text-hooks of algebra will be justified by the light that
the ‘geometric interpretation casts on somewhat abstract
algebmm theorems as well as by the use to which these
discussions are put in the graphing of equations. The{
chapters on the Solutions of Equations and Harder Curges
will, we trust, be found to offer some interest to every: type
of student, even if for no other reason than as ,prowdmcr
variety in algebiaie teaching. O .
The rest of the book, Chapters X VIIL-XXIW, contmns a
fairly complete treatment of the Conie. ¢ B\d‘&my properties
of the curves are most easily handled hy the methods of
Euclidean Geometry, and we have gt hesitated to adopt
such methods when there was distinect advantage in doiog
so, with the result that we have been able to incorporate
the essentials of the older t.reatlbes on Geometrical Conics.
Tt is hard to justify tl@\separation of geometrical and
analytical conies; at an}}“rate it has seemed to us that such
separation is totally\\mwarranted and is even mischievous
in an elementary(text-book. © We have tried to include all
the importanbpioperties of conics that are of an elementary
character, §hd" to group them into a comparatively small
numbei\of theorems, so that the student may not be
burdeﬁe\d by being confronted with propositions that are
Dt me special importance. The numerous Exereiges that
_are given in every chapter provide ample practice, hoth on
the geometrieal and on the analytical aspects of the treat-
ment, and will, we hope, be found useful in emphas.lzmg
the fact that, after all, the one subject of study is geometry,
even though the methods.are twofold. The gimplicity
introduced by the use of Joachimsthals Section- Equation
is, we think, sufficient warrant for the place assigned to it;
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and the discussion of Systems of Conies in Chapter XXIV,
seems to sum wp so unatirally the general principles that
underlio the applications of analysis to geometry that we
hope it will not be considered to be too severe for an
elementary text-book. Comparatively little stress has beems,
laid on the General Equation of the Second Degree;, \it-s
importance in an elementary coursc does not seem tQ'i}s to
demand & fuller treatment than has been given to if

Professor Chrystal’s text-books on Algehra aré ¥p funda-
mental in their character that it is impossibldto write on

" any branch of algebra without showiug&fiaces of their
influcnce, but we .desive to make special acknowledgment
of the great help we have derived/#rom Chapter 25 of
his Imtroduction to Algebra. MMeh'of our work is little
more than a restatement of fhe’ideas there laid down.
Again, in Chapter X VIL we have tried to give an elementary
aceount; of some of the morg® important methods developed -
with so much skill in Brost's treatise on Ourve Tracing
—a hools which is noW out of print.

A word may be(3hid on the position assigned to Freedom
Equations—g, tbn}ninology that is, we believe, due to Pro-
fessor Chrysta). From some points of view, for example
in its begafm,@ on Dynamies, the representation of a curve
by free@oin equations is quite as natural, and is much more
usgeﬁil"than the representation by a constraint eguation.
‘B'u%\ap&rt from such applications, the value of the specifica-

sotion of a point on a curve in terms of 5 single parameter

{"\“has been always recognized in works on Analytical

Geometry in the case of the Conic Sections, while the

whole theory of Unicursal Curves ig simply that of one

form of Freedom Equations. . Tt seems proper therefore to
infroduce the student at the .outset, to this alternative .

r.method of representing the equation of g _cui've; the theory

13 not diffieult and the. gdin in facility of graphical repre-
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gentation is great. Elimination is often a difficult and
tedious process, and may in many cases be dispensed with,
o far as the represenfation of a curve is concerned, by
making usc of Freedom FEquations.

The Answers to all the Examples have been worked out

by Mr. A M. Williams, M.A., B.Sc., who has also read the,

N\

whole book in proof. Mr. Peter Ramsay, M.A., B.Sc, has\

subjected the Txamples to a searching revision, and (as
independently verified the solutions. To both “C(E“fighese
. gentlemon we offer our hearty thanks for the e xeme care
and thoroughness with which they have cartied out their
laboricus task. In many details the boole,owes much to
the experience of Sir Richard Gre ofyy and we thank
him sincerely for his helpful advice: %\}b would also grate-
fully acknowledge the excellence b the work done by
Messrs. MacLehose. N\

: 3% GBORGE A GIBSON.

N P, PINKERTON.

10 Tz UXTVERSITY e\
GLABGOW, DP.UGmFJéT\ém
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CHAPTER L N
A

4

STEPS. POSITION-RATIO. SECRION-FORMULAE,

1. Positive and Negative Maa.sué':‘”:(}onsider the line A8
in Fig. 1, divided internally at Band externally at ¢, We

see that APEBB=AB, oo 1)
for N[4-8=10; .
but - L(AQ—QB=AB, e R (@)
for N 14-4=10,

So long ag>P’ is between A -and B, AP+ FPB=AB.
Let P moys up 4o and coincide with B; even now
AP +PB\’.L_;,\{B, for PB=0. Let P mave through B to ¢;
then R@..{iiminishea to zero, when P is at B, and appears
agafinbn the other side of B, after PE=1{. Following the

f"\."l1-1||||'||l|||||.||
o \ W S 1 T T

J° R A P B Q.
Fie. 1.

.,\.'\\_ . . - R :
practice in Algebra, we could measure QB by (—4). Now
144 (—4)=10; so that measuring QB (i) according to its -
length, by 47 (ii) aecording to the side of B on which it lies,
by prefixing the sign —, we could write '

: CAQHQB=AB. iiciriiinrennnnn3)
. @
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If P had moved to the left of 4, say to R, then 4P
would pass through zero to 4R, while PB would grow
steadily to RB. We could then denote AR by (-—3a),
putting 5 for its length and prefixing the sign —, to ex-

plain that AR lies on the side of A different from ApL.
Now (~5)+15=10, 5o that we could write o O
_ _ AR+ RB=AB. ..ccoviiviivnn s SNE
© Starting from AP+ PB=AB, it would be quite iAfalligible
Ctoread AP+PB=4B, %
AQ+QB=AB, LY
AR-+RB=A4B. N\

‘This may be summed up as follows

Rule. [f A, B, r are (Y thfregj}o;fnts on o straight line,
| AP+PB34B.

And the meaning of AP;PE, 4B could be given thus:

On the line mark an greow-head ; it AP {or PBor 45),

- from A to P, followssthe direction of the arrow-head, 4 P

means the length of M P with the + sign profixed ; if AP
(or B or AB), fromn A to I, follows the divection opposite

to that of tHeldrrow-head, 47 means the length of AP
with the —gigh prefixed.

In Figll™ AP=(+7),  PB=(+3), AB=(+410);

7L EDHE=(+10),
x§“ - AP+ PB=4B
R\ AQ=(+14), QB=(—4), AB=(+10);

(+14)+(—=4)=(+10),

o AQ4QB=AR.
ARE=(-5), RB=(+15), AB=(410); .
(=5)+(15)=(+10),
Y ARWRB=AE.

+PB=A4Bis a gencral rule; it enables us
& proposition, which depends on its use, is

The rule AP
to be sure that



&1, 2) ORIGIN AXD AXIS OF ABSCISRAR. . 3

true, whether P les between 4 and B or not, provided
that, as we say, we attend to the conveution of sign regarding
AP, PB, AB.

2. Origin and Axis of Abscissae. Let O be = fixed point
on & line X’0X (Fig. 2). Let U be another point on the
line on the same side of O as X, and lct the length of OU
be one unit. The position of any point P.on the lina,
depends on fwo things, (1) the length of OF according o)
the scale O =1, (2) the side of O on which P lies, whether
the X-side of 0 or the X’-side. The length of 0P, ageording
to the scale 0T =1, is specified by an arithmeticabhurnber,
say 22. The side of O on which P lies is gpécitied by
prefixing to 2:2 the algebraic sign + or < the sign 4
Deing profixed if [ lies on the same side’of O as X, the
gign — being prefixed if P lies on'the sia’p\s side of O as X,

Jod 3 I N
X 8P D O M A
Fre. a0

®

o+

C X

The number with the pfoper sign prefixed is called the
abscissa of P with regpect to the origin 0, so that any
abscissa can be entirly vepresented by an algebraic
symbel, x, for exay ple; since «, in Algebra, may stand for
any arithmetical number with the sign + or — prefixed.
Such  line as. X 0X is called an azis of abscissae, or simply
an axis. (XG5 called the positive direction and OX’ the
negative direetion of the axis. The positive dircetion may
be indieafed by an arrow-head. In Fig. 2 the abscissa of
A ig~p 5, or simply 1'5; the abscissac of B, ¢, D are
— 24 24, —1°5 respectively.

_ (\Phe abscissa of 4 is often denoted by 04 ; in this sense
N4 has a double significance, for it signifies both the
magnitude and the sign of the abscissa of 4. The measure
of the length of 04, aceording to the scale 0U=1, gives the
magnitude of the abscissa; the ovder of the letters is the
- equivalent of the sign of the abscissa. 04, like 2 I
Algebra, entirely represents the abscissa. Similarly we

write O0B=—24, 00=24, OD=—15.
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The measure of the length of OB is 24; the order of the
letters, from O fo B, signifies a motion in the negative
direction of the axis; hence OB is entirely represented by
— 24 :

If X’0X is an axis, and P any point on it, we usually
denote OP by a. ' ' A

Ex. 1. Draw an axis of abscissae, choose an origin aud scale_aiit,
and mark the points whose abseissae are 2, —2, 1'7, = 1-7, —82¢3.

Fx. 2. Plot with respect to an axis X'0X, scale uniis.)l in., the

points w=%, 4= —24, y= — 32, =28, (‘.ﬂ
3. Bteps, Let A4, B be two points on_ah ‘xis, origin 0; .

then AB can be measured (i), according o its length, by a
number ; (ii) by prefixing to this nmr\h:ar the -+ sign or the
~ sign, according as the direction 664 R, Jrom 4 to B, is
or is not the direction of the arrow-head on the axis, just
asin §2.  When AB is measuwredin this way, 4B is called

~astep. It is clear that

step. AvB,: - step B4,
or, simply, ~ JAB=-BA
Another impofg@t rule is
p '\‘ AB=0B--04,
for every pbsition of the origin 0.

Firs et 04, OB be both positive. . In Fig, 3 (a),

N

\\ " AB=5, OB=7, 04=9

‘ o2 7 ., a2
N6 A B 7B o A

PR ) fre) ' Fro. 3 ' o

: \‘: i i e, 5. _ :

‘ | : AB=0B-04.

Second. Let. OA. be positive, OB negative. In Fig. 8(b),
” _ AB=—5 0B=—3, 04=2 :
[ AB=0B—-0A.
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Third, Let OA, OB be both negative. In Fig. 8(c),
AB=17, OB=-3, 04A=-10. :

W 8
A B O
F1g. 3is).
AB=0R—04. A
Note also that A0+ 0B=AB, - \ .
A0+0B+BA=0
for every position of the origin, 7\ 3

Tx. 1. §f the abscissae of 4, B, points on an axi’s;ib}}fg\i'n 0, have

the following values, find the measure of the step A8
i) 8, 5; (i) —4, 2; (i) 3, —2; :(i()w’—l, -4,
" Ex. .2 I A, B, C,D,points on an axis, haveabscinae —3, 4, -5
_1 respectively, prove that 4 5= STEENS '
Ex 3 If M is the middie point of ABAvhere A, B are points on
an axis having abscissae (1) 4, 6; (H)HS6; (iliy — 4,6 (iv) -4, —6;
(¥) a, b, find the abscissa of M in cach Case.
4. Position-Ratio. If "x‘:l‘:iB, P are three points on an
. P A . : .
axis, %—B is called t'ihe\\pomtmn-ra,tm of P with respect to

A, B. (Note thaﬁt\'\ﬁj’, PB are steps) For example, in .
Fig. 4, e

¥

x:\’...‘ A POB Q
rN\NY . ¥ra. 4
’ ..&” AP=0P—=0A=(-1)—{—4)=3,
AN PB=0B—0P=1—(-1)=2,
N AP _3

, PB™ 2
AQ=0Q-0A=11—(~4)=15,
QB=0B--0Q=1-11 = 10,

AQ_ 15 3
QB~ =10 %
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Ex. 1. If 4, B, P have abscissae
@2 755 (27,105 ()-275; (w2 7 s,
(T-') _21 _7) _53

. End APPE in each ease.

Ex. 2. If 4 B P &, four points on an axis, have ztl)s;cissa{e
—1, 2,1, 5 respoctively, prove thal i PiPB= - 4Q/QR. \

5. First Section-Formulz. If 4 has the a-bSCiHSé.-\’?L\ and

' B the abseissa 6, where 4, B are points on an axis, and if

AR is divided at P so that AP/PB=32, theh we could
plot the points 4, B on an axis, on which ascale-unit had
been chosen, construct or mark the painf P and read off -
the abscissa of P. This can be douswhatever be the
abscissac of A, B and the position-tdtlo 4 P/PB, Henee
there must be a rule for caleulaty ’the abscissa of P in
terms of the abscisss of 4, thex\a seissa of B and the
position-ratio 4 P/PB.

Rule. Let X'OX be an x,i{;f'z’(!’i:& Let the abscissae of two
povnts 4, B be w;, a, respectively, let P be any point on
¥l \

. T el , : . o
the axis wnd ﬁza’,‘.ﬂwﬂ the abscisse x of P is Jound'

from the eguuﬁfi?yg g BE X,
g m-+n
Proof. Bee Fig. 5,
’ :‘;\:} ; { ——1 >
oy 0 A P B
O . F1e, 5, C
O AP=0P—0dwp—q,
’\ :' J'PH = OB —_ OP =, — 93 ;
. " PB a, g
But AP _m.
PB4
Loy _m,
By—



pring

§5] FIRST SECTION-FORMULA. 7

R — T, = M, — T
o {mn)e = ma,nay;
_ iy na

midn -

Since only the gemernd rule of §8 has been used in

the procf, the rule holds whether #,, #, be positive oS

negative, and whether the position-ratio ’;ﬂ be posnwe ot
negative. If P lies within 4B, then % is pomtwe; if P
lies without AB, —f is negative. 1f then —\(Eenote the

nuwmerical value ot the position-ratio, we have the double

rule AN
P i 2097 , for internal S}chon,
p+g’ P\ %
P it bk G N 2o ewtemal section.
r—y =N
Cor. If =, @, are the. giba-mssae of A, B and z the

abscissa of the m1dd1\s pomt, M, of AB, then a=—"1— ]+9:2

Tor we may put g L3 n=1.
D

O EXERCISES 1

1. Find g£he“abscissa of the middle point of the join of the
points 3, 570

(= The”\pomt 3" jg a contraction for “the point whose abscissa
is 3.7 \

2. Find the abscissa of the middle point of the join of the points
{Q 4, By (i) 3,5 (i) —4, —2; ({v; 3, -5; (v) -3, -5

3. Tind the 1bscns.i,e of the points of trisection of the join of

\ (1) the peints 2, 7; (ii) the points —4, 5; {iil) the points —1, ~4.

4, A, B are the pointz 1, 6 45 is divided internally and
externa,lly at P, @ in the ratio 2/3; find the abscizsae of P and @,
snd calculate PQ

5, A4, B, ¢ are the points -2, 8, 4; calculate 4C7OR.

8. A, B have abscissac 2, 4, and 4B is produced its own length
through B to ¢ calenlate AC’ /CB and the abscisss of O

C.4.G. B2

N
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7. A y & have ahscissae 2, 4, and AP is produced its own length
through 4 to 0 ; caleulate 4.D/0B and the abscissa of D,

8. £ divides the join of the points —3, 4 so that A /B -2,
find the absecissa of £ )

9. 4, B have abscissae «, b respectively, and A& is divided at P

8o that A P/PB={a—2b)/(2¢— b} ; find the abscissa of £, \
10. If 4 £/ P B=min, prove that 414 B=m/(m+n). A\
FIEY ¢\
11, I 4P/PB=), establish the formula z="! H——}L{]‘ e\ N

12. ¥ AP/AB=1, cstablish the formula #=, +¢(e, <)

13. i 4, B, &, P, @ are points on an axis spél dthat ¥ is the
middle point of 4B and A P[PB= — A9/9B, prove ti&, MP, MHip=Ha
1 1 4 ¢
FUAVTR YL RN -

14, 4, B have abscissae x,, xy: and P'ain} @ divide 4B wilernally
and externally in the same ratio. I&APP=d, find the coordinates of

Prove also that

CFand @

15. 4, B have abscissae xy, 2, 3.80d £ and @ divide 4B internally
and externally in {he ratio mfey Caleulate Pg in terms of Wy L2y

*

16. 4, B have abscissaes &% @ ; and the position-ratiog of P and ¢
with respect to 4, B areg, » respectively.  Calenlate £ in terms of
¥y, w2, Wy B K

A {
6. Uniform \iélocity. Buppose a point to ‘move on an axis

X'0X, unit Sy, and let the following talble Le descriptive of the
motion: ¢

A S
T ) 1
/Pgsition of point - | 4 B¢ n K
:“\" N _
AN =abscissa of point | 7 | —4 | 2 | 11 | 20
. f=time - - .| 1 2 ‘ 4 7 10

. where the time, ¢, denotes the moment, reckened in seconds from a

eertain zero, when the point is at 4, B, €, ste.
Then the point moves from —% to —4 in 1 second, 7.e. moves +3 in.
per sceond on an average, hetween 4 and B. '
. Also the point moves from —4 to 2 in g seconds, 7.e. moves +6 in.
in 2 seconds or +3 in. per second on an average, betweon B and ¢,
Similarly it moves between any two of the specified points at an
average rate of +2 in. per second. The sign + signifies that the
motion is in the direction from X to X, o :
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If P, § be epy two points en an axis X'0X, unit 1 in., whose
abscissne are 2, by respectively 1 if 4, Zp denote the times, in seconds,
w?}ie.n a point moving on ihe axis is at £, § respectively, then
it Ty — & . :
E—---%— or t——.z—l {for POG=0G—0P=u,—3) 18 the average velocity of
g=h  fT . 3 _
the point between P and €k if ,;LQ;_ or ‘3?— ? is constant and ==,
. ! 5~ 5 ) »
say, the point is gaid to have s uniferm velocity o I1f »1s positive the
motion is in the direction from X' to X; if ¥ is negative, from ,
Lo X Ko
The equation of the uniform velovity, described in the shove taliéy

is .\
s 10 B e i)
For, put »=—"7in epuagion (1), Then —7== —10+3¢ or:t: 1
" p=—d  n . —de=—104 33“& 1= 2
» = 2 mow . 2=—lod¥ or =4
" w= 11 ' " - 11'=,4; 43¢ or t= T.
L =2 . s N goe}-.io+3; or t=10.

Also, the velocity is upiform. For et Tw=w, and =1 satisfy
equation (1), and let =2, and t =1, alghakialy the equation.

Then = = 10.‘-1:3531, EUTTTUUTRUTOTPIOUROPRPPROTRL ¢ -}

2y S TOF By crersneisessssnensnenensne(3)
From (3) subtract (2), N\ _ '
.{-‘352""""1:'3(":2‘31)';

\ \-\ . P Tk Y

But iﬂfl sNIKe uverage velocity between the points specified by
2 3

H

a, y, anthGt s congtant and equal to 3, whatever the points are;
the;refoka the motion specified by equation (1) is that of a point moving
on tlik axi

i with uniform veloeity +3, e, moving in the direction
frafitad” to X at the uniform speesd of 3 inches per second.

N

“\“Rule. If the motion of a particle.on the axis X'0X, unit 1in, s

\Vgiven by the equation x—a-+bt, ¢ being reckoned in geconds, then the
particle is moving on the axis with a uniform velocity of b inches per -
geeond, and the time is reckeoned from the moment when the abscissa
of the particle is e '

Tx. The motion of a peint on the axis X0X, unit 1 in, iz given
hy the eguation x=3—9¢, when t is reckoned in seconds ; caleulate
(1; when the point is at the origin ; {2) where the point is initially ;
() where the point is, 2 seconds after zero-time ; (4) where the point
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is, 2 seconds before zero-time | (8) the velocity of the point {6) when
the point has ahscissa 5. :

(1) Put £=0, 0=3-2¢, f=14  The poiut is at the origin 1} sees,
after zero-time. :

(2) Put =0, »=3. The point has abscissa + 2, ~

(3) Put ¢=+2, 5=3-4= 1, "The point has abscissa 1, \

{(4) Pub 1=—-2, z=3+4-7. :

EH » » ‘-’: N .
(5) We write =32, #,=3-2¢4, whence 2y — = —zqgﬁxl) or
Ty &y

7,=r, — 2 Thevelecity is ~2, ie. the point moves inthelivection
— )

4 r 4 N
from X to X" at the uniform rate of @ inches per sceont,
(6) Put =5, 5=3-24 t=_1, 7T gee before zekoterme.

7. Second Section-Formula, [ [ A, BP wre thres points
on the axis X'0X, if the abscfissaq:gfvﬂ, B are @, x, re-
spectively and if fi—i; =¥, then % ﬁk‘ abseissa of P, is found
Frova the equation R

: ' X=X (X —x)t,

Proof.  See Tig. 5, 1?..’:(;5:’:'

AﬂPzOP—OA-—_m—-ml,
) u'i\ =0B—0d=a,—a,
\ X But 4p

AR~

O LB

(N Vg 7

) 5“\.“ . -
A\ e B @y =2y — @)t
u,\ e B= 0 (my—m )i
”\‘:\' : Sofw The abseissa, of the mid-point of the join of @y,

is 25 (Pat t=1). -

EXERCISES I

1, The motion of 8 point on X'OF, unit 1 inch

] iz specified by the
equation # =344z, ¢ being reckoned in 500 (1) b 4

C onds; find (1) th ity of
- the poing at every instant ; (2) the positio () the valocity o

n of the point at zero-fime ;
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(3) the position of the Foiut 3 seconds after and 3 seconds before
zero-time ; (4) whén, reckoned from zero-time, the point has abscissae
1, - 1.

9. Find an equation to specify the motion of a point on the axis
X'0X, unit 1 ft., if the point has a uniform velocity of 42 ft, per sec,
and if the point bus abscissa 1 at zero-time. (Tirke reckoned in
seconds. )

8. Find un cquation o represent tho motion of a point on X0, ¢
unit 1 foot, if it hus a uniform veloeity of —3 fact per sec., and its abacissi
is 2 at zero-tine, (Time rsckoned in scconds.) _ O

N/
4. At zero-time, a particle moving with uniform ve}oc}j:y on
10X has abscissa .z, ; ong second luler it has -ahecisaa /o) Prove
that, at time ¢ seconds, it has the abscissa = where B \\
’ m=ar+{Bg— 2} \V
5. Use the formula 2= +(#:—~x )2 to answerExs. 1-3, p. 7.
6. A4, B have abscissae 2, —3; and 7 an :Q\ divide 4B so that

AP{AB=3/5 and A¢j4B=-2/5. Calculate'th abscissae of Pand @
and the measure of the step P o\

7. A, B, € have abscissae 2, -3, — &3 ealeulate ACTAB.

8 4, B bave abscissae —2, — 3 A\ Pind the distance between the
polnts which divide AB internally and externslly in the ratio 3:4.

9. P, § divide 4B internally and externally in the same ratio.
Find the abscissa of § in teits of a1, &y, ¢, If ), #» ace the alscissae
of 4, Band AP/4AB=1 im’\

10, It 4, B, C D L@ﬁ'f four points on an axis, prove that
ABO.AD+CA. ED4+AEB. (D=0

11. If 4, B, @beany three points on an axis and @ the middle point
of AB, provethat 402 0B =245. 0C.

12, If.zi;}?: ¢, P be any four points on an axis and AP|PB=mnfm,

prove that/
..s\bk . AQt+n. BOt=m. AP 4+n, BPP+(m+w)CP%

ad
¢

N
~\J

\
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CHAPTER 1L &

RECTANGULAR AXES. COORDINATES. BINTANCE
FORMULA. SEOTION FORMULAR SJANT:AR
EQUATION. s\V
N

8. Bectangular Axes, Goordinates‘g‘f\ﬁ Point. In Fig. 6,
let X'0X be an axis of abscissge™ Let V'OV be drawn
perpendicular to X’0X, Then\P'OY may be used as a
second axis, and OV taken a‘v.g{;tﬁé positive direction of the

N,
N

\
N7

A P
{‘ \\ N
S .
ST vi
<"
R My QM M x
£¢ O )
N\
AN PN
,:\ ' N
,»\i"\\:; ) ' P
N/
\/ ,
Y
e, 5.
axis, Lét or,

; , OV be the scale-units of the axes X’OX .

Y'Y respectively -(in'Fig..’ G the units are equal); let U
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~ lie on the same side of @ as X, and let ¥ lie on the same
gide of O as 7. _
Let £ be any point in the plane of the axes and let
M, ¥ be the projections of P on X'0X, Y'OY regpectively,
Qince M lics on the axis X'0X, called -the a-axis, the
position of M is speeified by M. Similarly the position
of N on V'OV, called the y-axis, is specified by ON. Let
OM =7 and ON=y; then the position of P is specified)
~ when z and y are known, and conversely  and ¢ re
known when the position of P is determined, A\
OM or « is called the z-coordinate or abscissa ofsR; ON or
is called the y-coordinate or ordinate of P sofand y are
ealled the coordinates of P; X'0OX and YO Fare called the
coordinate axes, and are rectangular axes\;',P is called the
point {x, %) INY

HHH ""@‘—!_"!L“!.!'[ I FH
. Tl o e o M T T
it T

I
!
HAE

|
1
|
o

o e T
CRer e [ @
s SERREEEREESS
B e s iy Wy Eaan
\\ PN —S. -_-ﬂzl‘_‘i:‘_—_:‘:‘_‘: T
\ I _—H_jj]j:' 2T |

i T

Ny : ' T 7.

Clearly M may be used instead of ON; for their
lengths are the same and the direction from M to P is the
same as the diveetion from 0 to N, the positive direction
being that of O, the negative direction that of OF".
Hence if P is.the point (x, ¥) OM=2z, MP=y. InFig.7,
() is the point (14, 1'4), R is the point (—16, 0°G), & 1s
the point {—22, —16), 7 is the point (3, —1'4). :
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The axes X'0X, Y'OY and the coordinates @, 3 arc often
called Cartesian axes and coordinates.

Ex. 1. Draw rectangular axes X'0X, ¥'0F; let the seale unit of
each axis be one centimetre. Maik the positions of the peints (2, 3)
(=3, (~-%,3), (-2 —1), (24, -18), (-T2 —22).

Ex, 2. Mark on another drawing of the axes of Bx. 1 the followiog
pairs of points and calenlate the distance Letween the points, verTfying
the ealculation by meagurement : Q%

(1) (1, 2) and (4, 6); (2) (-2, 2) and (1,.‘(;‘)';,}
(3) (8, ~15) and (~4, —0%); (4) (-2, 31) AQTY12, -13)

9. Distance-Formula. Let P be the p{iiﬁ’t’\(ml, 7,) and 0
the point (w,, ,), referred to chosen reckitigular axes; then
P /5 TEI FEL

Let M, N (Fig. 8) be the projéetions of P, Q on X'0X;
let PR, u paralle] to X'0X, mest’NQ in R.

N

v ) ¢

. NS P/
S\ R

R\\J
I
”\QO
\\*«‘ 0 M N X

Fic. 8
Then PR=MN= ON-—OM-;(GS.E-CGI};
o PRE= (2, —a,
Also RQ=NQ-NR=NQ-MP=(y,~y);
- o BE=(y,~ 2
But PP=PR R,
. PQ_2'= (g _Q’J)g"‘(yz"yl)z;
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PQ= (s —m P +(H— 1)
or o, — )+ (= o)

We have secn (§8) that a straight line parallel to either
axis may also be used as an axis, its positive direetion
being that of OX or OY. When a line P@Q is not parallel
%0 either axis, the line may still be regarded as an axis, but
its positive direction has no dependence on the positive,
divection ot O.X or OF; hence the ambiguity of sign in the;
digtance-formula. In the meantime, let us agree that{the
positive direction of such an axis be the direction cfamotion

~of a point which travels along the line so that :}t-g.fabs’cissa

"

[l | LT L i P N N
_ll_? ! '.L{; ALY TS _‘__'___l__‘____"
- uN T g i Y T el

- ]

RS T ‘—:;TJ‘L;fo‘ N
EpEEELN . EREERREpE L LaREY u
I I | [NV

[ | L 1| ),z,__ L | — [
e __itégsk__Pzzf,:—j:j::r:____ EEE
- s e ]
___X_’__ | et = pry N O B A S A=
AT A N T
__: I _ E__ s __I_'__:::-. 1 .
L Sy R T W W
1] P e S8 |
jg;t:;;::;ﬂj;f::f?fp:::::&:::::; | ]

e e map An NS e AT L R ey ]

_ T{_:“:’: T ——:tY——h——" HEH

,\\ . Fie. 8

steé;dﬂy inereages. Thus, in Fig. 9, the positive directions
sof“the lines are as indicated by arrow-heads. With this

?3 wonvention TR
=(z, — Y2 h

PQ=(m,—z)y 1+ (mz-— ml)
in sign and magnitude, the positive value of the root being

understood. -

Note that OP=+ai+y? In sign and magnitude

OP =241 + e
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Ex. 1. Caleulate, by the formula, the distance Letween the follow.
ing pairs of points :

(1) (L 2yand (4, 6);  (2) (-2, 2) and (1, 6);
(3) (8, —1'8) and (—4, —6D),

Tix. 2. 4, B, P are three collinear points ; ealeulate the sign a
magnitude of 42/PB and AP{AB when ., B, P have the fullowing
coordinates respectively : A

(I) (11 2)! (2? 2)) (3, 2) H (2) (2! _1)5 (21 I): A 2)"\ e
(3) (]: 2): (_3: 6): (2: 4); (4) (]) 2): (3, 6, ("‘]': ?’)\ gt

Ex. 2. 8how that the points (2, 5), (3, 2), (G, 6) arg €heyvertices of
an isosceles triangle. ‘O

Ex. 4. Show that (2, -2), (5, 2), (-2, 1) i the vertices of a
right-angled triangle, and find its area. y

Ex. 5. One end of a line whose length j&3a'is the point (-2, 6};

and the ordinate of the other end is 1, wha are the possible values
of its absciza 2 N

%7

Ex. 6. Show that the following }mfn‘té lie on a cirele whose contre
iz the point (3, 4) and whose radingiss ;

(89 4): (7: 7)! (6: 8?3‘10’ 8}1 (_ 13 1): (3’ - I)-

Ex. 7. Caleulate the sidesand diagonals of the quadrilateral whoss
verfices are (3, 2), (—1, 3390, 0), (4, 0); and test your results by
measurement, A

Ex. 8 If (o, %) i;s{él’n} point which lies on a cirele, centre (2, 3) and
radius 4, prove bh{\?}g’—{- yi—dr—ty—3=0,

10. First> Section-Formula.  If fized points 4, B huve
coordindgteg” (z,, ) and (w,, Ya) Tespectively, and if «
varialeypoint P in the A B-awia have coordinates (x, 1),
the%:a})e MY write '

O

« X=—= mx, +n_ﬁ . - 2¥,-+ny,

N

' m4n °’ m4n
where AP/PB=mjn (4=—1).
Proof. Let F H, M (Fig. 10
A,IB, £ respectively on X'OX; :
et &, K, NV be the rojections of 4 B L ivel
oo VOT proj [ 4. B, P respectively
et AQ weet WP in @ and HB in R
let AF meet Np inSand KBin 7T

) be the projections of
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' AP_AQ_FM
PRTQRT MH’

m_ OM—-0F =z-2

" Then

therefore = OH—OM m—d’

so that L — Uy = FLy — Wl

or (m-n}E=1mi,t -':'z-:cl';
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A A
4o that - m_YTy
\/ _ % Ya— ¥’
and therefors = %'}'i?ﬁ.

m+n
C‘OR The coordinates of the middle point of AB are
(”1"’932 "h"‘%) .
2
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EXERCISES IIL
1, Find the coordinates of the middle point of the join of (2, 3)
and {4, 5).
aTitE 244 9y Yy A+5_
_ ST g B YTy =4 A
The coordinates of the middle point are (3, 4). :
2. Find the middle point of the join of (~4, 7), (2, —8). R \J)
3. Find the points of triscetion of 4B where A is the peint (2, 3)
and 7 is the point (4, 5). N
Using the formulae, put m=1 and #=2, then m— Zpp=1. _
4. If 4, B arc the points (—1, 4) and (5, ja).\l'?aspectiveiy, find -
the coordinates of P (1) when AP/PB=1; (2)/when A PIPB=2,

. (3) when AP{PB= -2, (4) when 4PIPB= — 473

8. 4, B are the points (-2, 3), (7, L)‘.;.\F'ind the coordinates of
I, § which respectively divide 42 inpernally and externally in the
ratio 3/2.  Caleulate the length of @\

6. A, Bare the points (3, —5), {6, 2); and P divides 4B so that
AP{PB= -2{3. Calculato the lengths of AP and P5.

T. 4, B are the points {11y O) and (-10,0); and ¢ is the point
{—5, 12). The internal bisgetor of angle ¢ of triangle 45¢ meets

4B in . Calenlate (1)ad /PR, (2) the abscissa of P, (2) the length
of P \‘ :

8 4, B, ¢ are 'tﬁ;e’ points (—13, 0, (15, ), (=5, 15) respectively.
The in- and 'ex&%ctm‘s of the angle € of tiiangle 4 BC meet 4B
in P and @ respectively. Calculate the lengths of 79, PC, GC.

9. 4, B0 are the points (2, 8), (7, —5), (-4, —8). Calenlate the °
coorqut\ég of (he centroid of triangle 4 BC.

{ Frove that (‘?A’l_"{"f;"f“_’"s‘, .%L’i/;m) is the centroid of the
tﬁ%gle whose vertices are (zy, 7,), (2, #,), (#2; 25> '

ST IE 4, B, O are the points (5, 0), (=5, 0, (3, 6 a,nd. &, %) I8 an,
\_’ point 2 in their plane, prove that o » 3 6) ) 7

LA PR PO =G AL GRY G024 3. PG,
where @ is the point (1, 2).

12, If 4, B, € are the points (a, 0), (—a, 0), (3, d Pi
point on the x-axis sueh that ALEPR =)f;z;'m,, pro%re(thsfgj o i
m. AC 4 B(E=m. AP 4n, BZ’3+(r;a+ﬂ)l_. orpe,

13. If P, ¢ are the points (zcos 0, bsin ), (—~asin ¢ 5
that OF2+ 0¢2=a*+b%, where O is the origig-],( s “ f:.c_;s 9), prove

oy
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11. Component Velocities : Resultant Velocity, (ana moving
body be travelling in two different Jivections at one and the same
time? Can a balloon be seid to be travelling forwards and upwards
at the same time, or wust we say that it is travelling in just one
slavting direction at any time? If & man walks from the front
{owards the roar of a coreidor train travelling west, is he moving both
cast and west u6 the same time or is he simply still travelling west?
If a ring is rolled along a table, is & point on the ring going round and
also going forward at the same time 7 1f a little lamp were placed ofy

the ring and the ring roiled along a takle in a dark room, so that{awn’}

observer did pot know how the motion wag produced, would)he
dream of saying that the lamp was going round and algd going
forward ; would he not say simply that the lamp was moying side-
ways down to or up from the fioor ¢ +£7)

The two possibie answers, yes and no, to these questions“seem to be
eontradietory ; bub they arve not contradictory. J&dd\frue enough to
say that the balloon is moving forwards and 1 wards ab the same
time ; it is equally true to say that it is going jm wue definite slanting
direction at any moment. & :

To avoid confusion, howevar, we =ay thzit,\a hody may have two
{or more) componsnt motionsg or displagéments at one and the same
time, or & single resultant motion oL digplacement at any one time.
If a point is moving in the planegef the axes X0X, VOF we are
freo to consider its component joations in the directions of A'OX
and ¥'OF separately with the 0'[3j stt of answering any guestion about,
the motion. N '

For example, lot the enpded line AR in Fig, 11 represent a_telcgra'ph
wire suspended from 4 end A, and running alongside  railway line

(/D ; the line 48 is .c\l(treﬂ bhecauge of the sag in the wire. Let a train

AN
A S o
N\ :
O
"~’§’T S
\ ) C——”ﬁ"ﬂ.' L D

Fri, 11.

be supposed fo 100ve from € to P with uniform speed ¥, and let a

assenger seated in the train wateh the wire ad he passep. Lef us
?ur-ther‘ guppose that a particularly enerpetic fily travels along the
wire from 4 to B so as to be always cpposite to the passenger. ‘When
the fiy is at £ its resultant velocity is in the direction of the tangent
to the wire at P, which slopes dowgwards. Now, applying the notion
of component velocities, think of the fy when ab P as moving forwards
horizontally and downwards vertically at one and the same time,

&
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instead of moving in the direction of the tangent. Since the fy keeps
oppogite the passenger its horizontal motion must keep pace with that
of the passenger ; the fly therefore moves horizontally forwards with
“velocity % and vertically downwards with u velocity that we may call .
Now it iz a mafter of common observation that if two trains move
side by side with the same velocity a passenger in one would think a
passenger opposite to him in the other was not moving at all : theg™\
have no relasive velocity, Hence the fly when at £ must seer o the
passenger to be falling vertically downwards; at &, on the other Khyd,
the fly would appear to be risin straight up. R A\

The illostration shows how a body which is moving with mabﬂ uite
velocity may be regarded as having two or more componsnh veloeitiss
of which the definite velocity is the resultant. The resuftant veloeily
way be regarded as a constraint velocity, the compopént velocitios as
freedom ve%ocibies. ' o\

12. Parallelogram of Velocities, TLet a moving point, when
at 0, the origin’ of the axes X ‘0X, Y'0OF, h_a(&é. component velocity
of 2 inches per secend in the direction X'OX'dnd a component vel oty
of 1 inch per second in the direction FQY, and lot it move for a
certain time, its component velocities véxiaining the sume dnring that
time (Fig. 12). At the end of half 3wsecond it will arrive at the

*

. ~t\" Fia. 12
PRy L - . .
051%13 18] {L&); ab the end of one gecond it will arrive at the position

{2,1); at the end of ¢ seconds it will arrive at the position (2, 6.

N these positions are on the stra ht line OP or 6 produced,

) .,\'.Hene_e it 04, 0:?\7 be cut off from the égxes to represent the cgmpbnent
\\Jvelacities the diagonal 0P of the rectangle OMIJ) ’¥ will yepresent the
\ } re;}ﬂtant velocity. If 0X, 0¥ are not at; right angles a parallelogram
OMPY would veplace the rectan, le. Hence a uniform veloeity in the

plane of the nxes iy be replaced by two 1 i itt
fu the direernes L7 b mxeg. Y component uniform velocities

13. Freedom Bquations P X=a -%-‘Ibt, ¥=c44dt.

'(§Any cetuponent uniform motign aloug the axis X'OX is speciﬁéd

6) by the equation w—q- by, ¢ being th i ing * -
point ab zero-tise, and b the velocity. ¥ Pho absciasn of the moving
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Any component uniform metion along ¥'0¥ is specified by the
eyuabion y=ac+di, ¢ being the ordinate of the moving point at zero-
time, and & the velosity. ’ :
Hence I a point move with uniform velocity along any straight
line in the plans of the axes X’'0X, ¥"0F, the motioun is completely
specified by the freedom equations . o
a=a+bt, y=c+di s N

14, Second Section-Formula. If fixed poi%ts A, B haven
coordimates (g, u,), (&g, ¥y) respectively, and if @ vorighle™
point P im the AB-owis have coordinates (a, y), then e
may write N
x=x1+(!€2—x_1}f-_, Y=y1+(}72—3’1)t, ¢\ !
where t=AP[AB. ' .“’:,\
Proof. In Fig 10, O
AP_AQ _FN_ &’@f%f‘;\ )
ABTARFH OHXY
AP OJM—_ Q_F»: ﬁ'—'ﬁ .

But =% and -2

4B OO<OF a,—w,
. . -?:'—:_::a‘;—; = t ;
IR
_ R im%ml+(m2—wl)t.
Similarly, \\yz ¥+ (g — ).

Cor. . The coordinates of the middle point of the line
e ' @ 2 Yy Yo
joining the points (x;, y,) and (x;, y.) are (—‘12—‘, -Jl—QL)
[Pat i=1/23

Ex. NI 4, B arc the points {—2, 3) and (5, —1) res(pecbivcly,
find $he coordinates of £ (1) whon APAB=1/3, (2) when

AP,:’:!’B= - 3;"‘2 .

2\ —.Ex 9. If (x, %) are the coordinates of any point on the line joining
\(2, 1) and {5, 8), prove that 2e - 3y=1. .
S Tut a=x; +{my—a)t=2+34%,
| y=p e —g)t=1+26
Now ¢ is the same number in both of these equations, From the .
first, £={z — 2)/2, from ihe second t=(y— 1}/2. Hence

r;_g =3’I;—], ne 2xr—3dy =1
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0 Fr3 1t (2, y.) is any point on the line Joining the points (-3, 1)

(1, —5), then 3p 4.2+ T=0.
Ex. 4. If (5 3) is any point on the line joining the points (3, 4),

{=dy 23, prove that 2z — 8y +6=0.
Yo TS,

:_/'_ 15. '];he édﬁation Ax+4By+ (=0

O
- I (m, y) s any point on a given straight line, Lhoag

AdxBy b C=0; where A; B, U are constants wh’éck\cr?vi-se
i specifying the lime. ' O
Let the line be specified by fixing two points.gn it, and
let these points be (z,, %,) and G 7Y N
‘Then (§ 14) we may. write m.'\\
@ =, (@, — @),
Y= +(@/2—3ﬁ)‘?\ /

or & = bE, x\. ..................... (1y
. Y=c+dt, ’ ...... eeeeenn (2)
where a, b, ¢, d are constants .ti:i:ising out of the specification
* of the line, N
From (1), . N =ad bz,
N E)) AN by=be +bde;
subtract : Nz by=ad—be,
ie. \}zé+(—b)y+(bc—ad)=o,
which ma,y.b:e‘ written
O\ Az +By+C=0,

Ap\'eau&tion of the form Ag + By +0=0, where 4, B, ¢
_do\n;ot'depend on «, 7,18 called an equation of the first degree
Jag v or a linear equation inm g :

& Hence we may enunciate the theorem of this section as

O Toliows ;

\4

The coordinates (v, y) of every point on o strosight tine
satisfy an equation of the first degree in z, .

Ex. 1. If (e, #) 1s any point on the straight dne given oy the two
points (2, 1} and {3, 3) on it Pprove that Sp— _?;—E:-:;G. ‘;:arify the
;qg;mttlo(g v;}):len ?,3y)3;s ((12) the ﬁmint of Sissction of the Hne joining the

vints (2, 1) and (4, ) ; either oot of trigesti ine jorni
Eot point’s @) it 3? Deant o Tigection of the line Joining
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Ex. 2. Prove that the ocquation 2w+y=5 in satisfied by the
chordinales of every point in the line jomning (2, 1) and (-1, 7
Calling these points 4, B respectively, verify that the coordinates of
satisfy the equation :

(1) when AP/PB=1; (2) when 47/PB=-1/2;
(8) when AP/4B=-1f2.

Ex. 3. A particle starts from the point («, 5) and travels so that its
component yvelocities parallel to X'0X aod F'OF are the constangs
#, # ; prove that the coordinates of its position at any time during ghe’)
motion satisfy the equation ww—wy=ve—ub. Why do z=fryu,”
y=b+ v satisfy the equation? (Sec 8§ 6, 13) L

Ex. 4. Prove that the points (1, 3}, (5, —1), (-2, 6) a.re.éolffnear.

Lok (x, ) be any peint on the join of (1, 3), (5, —1); thep v+y=4.
But (—2)4-6=4; . cte. . . . NS

Bx. 5 Prove that the four points { -2, 3), {2, TANY, 9), (—1,4) are
collingar, . : ~NY;

7 ¢ '\

16, The Pquation of a Straight Lma\ It has been seen
{315) that the coordinates z, y of wny pomnt on a given
straight line satisfy an equationgf the first degree in , ¥.
This cquation is called the equagion of the straight line. For
example, the coordinates af\avy point on the straight line
passing through (2, 1) and (5, 3) satisfy the equation
Ze—3y=1 (§14, Ex Q 22 —3y=11s the equation of the
straight line passing”through (2, 1) and (5, 8); we also, for
shortness, speak 6f\‘the straight line 2¢—35y=1 ’,’ instead
of “the straightNinc whose equation is 2¢—3y=1." :

The equatiohs’

'\T: m (=)t Y=+ (Y- ?h)tl

or \:"}”m=a+b¢, y=ctdf
are ~¢3’}led the freedom equations of a straight line. Thus
:.\':,’ | m=2+3t, y=1+2t
\ Jare freedom equations of the line whose constraint equation
is
2w —3y=1

The following examples will show how the specification
of a given straight linc is translated into an analytical
equation ; and, eonversely, how & linear equation m &, y 18
represented by s straight line,
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\ +assignad aaes and
X, i nation, referred to chosen or :L!:hlg‘_”_ .
"scaEl“:.ulﬁits]i;l%% Eﬁg :Era.ight line passing shrough the origin wnd the
| ‘ . ,. ; 1 : the
e b e B L b
of i point (z, ) on 4, s
point {3, 5} and P any point (x,
required

—— T N

| ) |

x(d T [T ]' -
L 4 t\ Frs. 13.

AN
Let BA, 3P e m ordinafos of 4, P,
. Then As OAR, pry are similar,
P\ . MR on ()
»O TOBATER e
Thisequation is trug in sign as well as g
.of ’R;sirice HP and 0¥ havs always t]
am positive, .
waBuot, in gign

gnitude for every position
18 same sign, and B4 and OB

and magnitude, M7,

: y BA=5, 0M=s, OR-3
7\ Bubstituting thege values in (1), we have *
W ' y_w. |
5 37
\ Br= 3.

Hence the coordinates of ay
Sa=dy, '
e Br=3y is the
(Note that the
y=b)

¥ point on the lipe satisfy the squntion
équation of t-l_ie line,
etuation jg satisfied if g, ¥=0, and alao if =3,

*Thi_s clause iy wsually loft o pe wnderstood,
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Ex. 2. Through the point (0, 2) is drawn a straight line parallel to
tho straight line passing through the points (0, 0y and (3, 5); to find -
tho eguation of the parallel. '

Let the axes and scale-units be those of Fig. 14, Tet P be any
point (, y) on the parallel, ¥P the ordinate of P cutting the line
joining (0, 0) and (3, 5) in ¢; let ¢ be the point (0, 2). '

TV

1 T T I~
I I L N A o
-+ 5] | p - ‘\".\
T Bt >
- i 1T O] y W
[, T mN P
3 ’d?r, o] A\ 3
r r q #
7 : {
- Y e \
PP
r o 1V
O IR AT
1 A
-H i -
RN HT T
Fia. 1»;:{.; v
Then MP=HQ+@P, for all padivions of I, @, P (§ 3).
o MPAYGLOC .. (1)

Now, by Fx, 1, the equation of 0@ is 52=3y,
\’\":i 50N =30,
\ . 5.0
XN M= OM
Bubstituting ip {I), we have .
X\ MP=%.0M 100 .
But ¥ Py 0 =2 00=2.
O\ - oy=Hte+g,
N & Ba—3y+6=0, _
L testhe coordinates of ‘any péint on the parallel satisfy the equation
Gy iy +6=0. -
. . Bz —8y+6=0Iis the equation of the parallel.
{Note that the equation is satisfled if #=0, y=2.)
Ex. 3. Find the equation of the straight line passing through the

points (2, —3) and (4, —6) :
Let (2, y) be any point on the line,
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% ‘ ANALYTICAL GEOMETRY. [T, &L

We have (§14) = +{w—a)e,
Y=+ ln—m).
Therefore | r=2H{4—2)t=232¢
| p=—3H(-64+3)=—3-32,
50 that dz+2y=0 is the required equation. . .
Ex 4. Axes and scale-nnits being chosen, draw the straight lind
represented by the equation 92 4 3w+ 5=0. < 9 \
When &= - 4, —B4+3y+5=0; . y=1. O
When =5, 1043y +5=0; . y=-5.

Honce 8—4, 1), (5, —b) are on the line vequired. [lob Lfit'?‘i—' I].\\-'ltT
points and draw a straight line through them. The 'l'lmf.hl}l"‘]h 1 '1;:
simply : “c¢honse any two convenient valiwes of , cgﬂ‘g laka: .hcsm_ lt..
equation the correspondin g values of 7 and theu Plot’the two pin Hl
Care should be taken to select points not very eldeMo ench other, i

it is often useful o Plot three points ag » testial the aceniney of the
drawing, : ¢

EXERCISES\IV.
L. The equation of the parallglft-r; Yor through the point (-2 1)
is 2 42=0, N

2. The equation of

the pé.;"%ﬂ]el to 7'0F tarough the point (3, 1)
B r=3. “

3. Whas stt‘a,ight.w}iﬁes are s
Z-l=0,y4+9-q axeg, and seale-units being Previously assigned ¥
"4 What s tha ation of the locus tracod out by a point which
starts from thy Pasition ©, —8) and moves parallel to the r-axis !
9. The, &quation

pecified by the equations z= 1,

of the bisector of the agles X0Y, X'OF is
F-y 20; \ ¥ T
G,.,If_}he seale-unit of the -axi3 is one ingh and the scale-unit of
the\g;gxm half an inch, draw tle line whose equation i 22— ¥=0. By
Eamplo 5 the equation x—

; X’S\}, docs 1 ¥=0 represents the bisector
3 (oes

1 of the angle
1© ine you have dyawn bisect the angle Y0¥ 1 Show
0 should hyve fop its equation, 7F the soule-
ere the soime Jor the two gy, E—y=0%

7. The equation

Fox is
8. Fi abi ..
® 3 ia 312 :qg;tttlon of the sty aight lln.e IOMIRE the origin o the

mple shows hay 5 diagram is dist-m‘f:ed. when { i
examp n tl ale- H
he waxis ig different, from that of the axis, Tf 4 dl;a, ra,lr; ?;d‘ll'lecﬂ‘:ué'l)t §‘-‘f
distorted the tuo seale-units must be the Sarne, g

&
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9. 4 is the point (3, 4) and 0 is the origin. The equation of 04
is dv=3u.

10. The equation of the line juining the origin and (—2, 3) is
B+ Gy =10, _

1l. Prove that the equation of the parallel through (0, 1} to the
biscetor of the angle YO F is y=a+ 1.

12. Throngh the point {(, 2} is drawn a straight line parallel to the
line joining (0, 0) and (3, 4). Prove that the equation of the paraliel «
P2 de—By+6=0, \

NS ©
Let P (2, ) be any point on the parallel. Let P, the ardinate

of P, cul the other line in ¢L N
Then y=MP=MO+pP 7 2
=4}.0M+2. %)
 By=4r+6. )

13. The straight Hne through (0, -1) paralle]}tb the bisector of
the angle FOLX s represented by the equationishy +1=0.
14, Prove that the equation dw—3y ~4$=Qrepresents the parallel
through (1, 0) to the line joining the origindnd (3, 4).
16. The equation to the parallel t}u’éizgh (=3, 0) to the Hue joining
(3, 4) to the origin is 4v— 3y +12=003 _
16. Prove that the sbmighnfﬁ‘ne 2z —3y="T passes through the
poinb (2, — 1% ) ~N
17. Which of the poiutd(3, 1), (=2, - 2), (=5, —4), (=1, 2).lie
ou the straight line » - 24=58"1
18. The perpmldicu\f}b} through the 'origin to the line joining the
origin to (3, 4) is repirgsented by the equation 3»4- dy="0, .
1f A ia the poir{tf’. 3, 4} and P any point {», ) on the perpendicuiar
through € to Ay¥ud if B4 and #2 are the ordinates of 4, I, then
As OB A, Paffare similar.
1, oy 1ifj:f;f1é eanation. of the straight Kne joining (2, 3} and (3, a).
| #D. rove that 3v-dy=T it the equation of the straj ght Tine
colnifieh(l, 1) and (9, —5). '
”\21 ‘Which of the following points do and which do not He on the
Vlﬂﬂ )2'?;_ By =-5 ?_(1! 2), (]! - I'): <_2: _3)? (_ 2, -~ 4): (3} “1‘")! (_3: “3)!
22 Draw the straight lines whose equations are
() x+y=2, {ii} 2#—38y=5, (i) B4y =7,
(ivy o —2y=1, {v) 2e—y+3=0,
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CHAPTER II1. N\
GRADIENT OF A STRAIGHT LINE. OBLIQUE) AXES,

POLAR COORDINATES. AREAR"

J7. Gradient of a Straight Line. IK s been agiced
already ($9) that the positive directiGh“of a straight line
not pa:rallel to either axis of cogrdinstes is the divection

-0 which & variable point (2, y)*qn’ the line travels when
% 'mereascs, By the angle whieh % straight line makes with
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§17]  CGRADIENT OF A STRAIGHT LINE. 99

‘line we mean tan 8. Since the tangent of a positive acute
angle is positive, and the tangent of a negative acute angle is
negative, the gradient of a line may be positive or negative;
it is positive when the line slopes up from left to right and
negative when the line slopes down from left to right.

Ex. 1. Find the gradient of the line joining the points (2, 3)
and (4, 4). ' : '
In Fig. 15, let 4, B be the points (2, 3) and (4, 4),

Let the parallel to X'0X through A meet the ordinate thmugl}’B‘g\
2N

in . Then f=angle measured from A to 48;
L otan ezﬁ?:%—_—g:l B : o‘~}"
: 40§27 2 N )
~ the gradient of the line is 1/2, { ¢ /
Wemay say the line rises 1 in 2. )
Ex. 2. Find the gradient of the line joining {he pointa (- 5, 2)
and (7, —4). Vo \d :
In Fig. 16, let A4, B be the points (5, 2) m}gkg?; -4}, :
BLetC the parallel to X'OX throngh 4 meetythe ordinate through
in €. . ¢

P

1 - .
} 7 LV 1] ‘I'“ | ]I |
T
P by  § ‘\ (: o ]
AT
oY
- A
EH 5 I
N4 - F ; AN
\ T ] 2,
N\ b1 t T TTT LT L=
A Fig., 16,

- NS
\m Then §=angle measured from 4(' to A5,

S tan f= % (OB is negative, A¢ is positive)

-6 1
1T
. the gradient of the line is —1/2,
We may say the line falls 11in 2.

N\
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Ex. % Prove that the gradient of the line joining S
(i) (3, Hand (5, 7} is /2, (ii} (-3, 4} and (5, ~ 7? iw — .'I 14,

(iH) (0, 0y and (1, 2) is 2, {iv) {0, G) and (-4, 3) is - 3/4. .
18. Formula for Gradient. The gradient of the stvaight
line passing through the points (%, v,) und (2, 7.) 4N

(o= y1)/ (2 — ).

First: Of z, and w,, let 2, be the greater. )
. Let A be the point (&, ¥,} (Figs. 15, 16). O
2 B no Ly Ho ) (”:"'
Let the parallel to X0X through 4 meet the ordinate
through B 1m C ~A\V

Then, sinec w, is groater than @, »
the direetion A B 1s the positive directiop of the line,
. the direction A€ is the positive diréeticn of the @-axis;
therefore 9, the angle which tlge\]iize mekes with the
@-axis, is the angle measured fromA'C' to AB.

. tan 6:%%, 1nﬁign and magnitude.
Now lot HA, KB be sk drdinates of 4, B,
CB=KBe C’:KB—HA:m-—-yl;
AC=HE=O0R =0H =g, g,
h\ tan.f?:gff"::y——i-yl
w\J A0 @y~
But thécgradient of the line is tan 6 (§ 1%).
R

N\

-+ the gradient of the line=%2 =%

~Sicond. Of  and o
\#bove, T and % leb x; be the greater; then, by

. :\ : the gradient of the line=¥17% =YY
\ ~By Xy—ay,

Hence the formula always holds.?Ll

For eXample; let {x
; s %) be (~5 9 :
(7, —4). Then th;, gradient of iﬁe ]ing’ja'nq let (a,, 5,) be

Ve —4o B olmng these points
D=2y T(=3)" "2
E i =

§ = Find, by the fDI'mula,-t.he gradients of
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'19.  Parallel Lines and Perpendicular Lines. _

Let any, m, be the gradients of two straight lines.  If the
lines wre parallel my=my, of the lines are perpendicular

Ty = —1; and conversely,

Let the lines make with the z-axis angles 8, 0, §17).
It the lines are paralic], 8,=6,;
therefore - tan@,=tané,, O\
that 1, Ty =1, O

If the lines are perpendicular, one gradient is (pdsitive,
the other is negative. Hence the product of thegradients
is negative. 1t remains to show that thaiproduct 18
numericully equal to unity, \%

Let the lines cut the a-axis in A, B Qnd one another

/N

in € (Fig. 17). : s
\’
T A I
:*Tf’||r-|'|||ri:\i T ]
ﬁ_i I A
' | WA S|
i . T T
T N T
T . | ]
'F—I—T' e, ’/Tllrgi
NRpn PO T
_::!.I Sum :r‘ N I
SREmRE AT uE
AL HOHTHEN
ymm N
7] W !
N M I : | i
= . bl i
N e H A
. .f\ Fie. 17.
o .
"\ “Then, numerically, one gradient= 10

\
. AC
numerically, other gradient= BC

Therefore, numerically, product of gradientjsz 1 -
But we have seen that the product is negative in sign.
"oy, = — 1.

LEFR : c
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EXFERCISES V.

Praw a line through the origin which 1ises 3 tu 4.
Draw a line through the ovigin which falls 7 in 8,
Prove that the join of (1, 2) and (4, 7) rises 5 in 3.
Prove that the join of (-2, —5) and (4, = 3) vises 1 in 3.. O\
Prove that the join of {—3, —4) and (2, —5) falls 1 in S
What are the gradients of the lines in Exs. 1-57 \' ™

. Prove that the line joining (x,, 7,) and (%, 1) vises{y, — ) in
(s — %) in algebraic measure. '

. 8 Prove that the line joining (0, 0) and (3,4 xrs parallel to the
line joining (-3, —6) and (3, —4). ~N

9. Prove that the joine of (0, 0y and (5, <3} fias the same gradient
ax the join of (—2, —3) and (3, —4). AL ’

10. Prove that the three points (0, ;};{;62, Th (3, 9) are collinear.

11, Prove that the three poihtS{—4, 6), (1, 1), (6, ~4) are
collinear, ’ \J : '

12. Prove that the join of (B%0) and (4, 7) and the join of (0, 0)
and (7, —4) ave perpendiculun

13, Prove that the join of (3, 2) and (7, 9} and the join of (3, 2) and
{10, —2) are perpondiculat)

4. Frove thai the join of (-4, 7) and (2, 5) and the join of
{~3, —5)and (2%, 3-2) are perpendicular. ) :

15. Prove thab(2, 1), (6, 8, (9, ~3) are th i angl
and Aol 3 (6, 8), (9, ~3) are three vertices of a rectangle,

*18. ?{I’(ﬁ"e"that the straight line y=3 rizes 3 in 4.
175 Prove that the straight line y= — L falls 7 in 8,
’g\s;fl‘&“l’mve that the straight line y=mae passes through the origin

S

has a gradient =,
3 3" 19, Draw the straight line whose equation is
~O My=205 @ g=1c; @) y=-3e; @) r—gy=0;
\ 3 . (5} 4x+5y=0, ‘
20. Find what straight line is 1'§p1’esenbed by the equation y=3

y-3_1
By tho f ient=Y2Y iy
¥ tho fornwula, gr&dlentﬂ%_—'-l-, wo see that the gradient of the.

line joining (2, 3) and (e P A .. . .
e Joing (2, ; » ¥iiis &, - the join of {2, 3) to (x, ¥) rises
H :B 2, .~ if we draw throveh (2,-3) the stra,igh,t line \'E*hi(‘:h rises
The student who ﬁnds Exs. 18, 17, ote., difficult should read §§ 23, 24.

"

h ) : . . N
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i1in 2, (# ) muost lie on this line. Hence this is the line vepresented
by (g~ Dz —2)=1
21, Find what straight line i is represented by the equu,tlon =21
(The straight line t.hrough (3, 2) of pradient 4.} -85
22. Find what straight line is represented by the eguation
y—1=%{x—3).
23. Prove that the eguation y_;;2=3 represents fhe straight line

which is drawn through the point (0, 2) and has gradient 3.
24, What straight lines are ropresented Liy the following equa.tmqs

-3 1 1 3
OF — —ai Du- 2—‘-3", (B y=gx+1; 4) :”f=—;12’3~‘f'}3;

() y=—25—37 D
25 Prove that the points (1, 2), { -5, —2) lie on, i@ &rm’ght line
represented by the equation 27— 3y +4=0.
96. Which of the following pom‘rs he and w]:m{\ﬁo not lie on the
line whose equation is 3z — y =7 5 viz.

(©, 4) (=3, ~10), @ —1), (~1, —2),(\7 9, (3, 2)?

27. Prove fhat the straight line ‘——'—3 paases through (1, 2) and
has a gradient 3,

28, Find the equation of the‘ stra.wht line through (2, 3) of
gradient 13. AN

29. Find the oguation of the straight line through (0, ¢) of
gradient m. ~

30. TFind the eqna.t%{of’the straight lnes throngh
' (i) (2. 5) of gradlent — 3 ; (i1 {—3, ~2) of gradient & ; -

(iif) (4, 2)yohgradient §;  (¢iv) (5, — 3} of gradient — 2.

31. Prove thit the equation of the straight line through (#,, #) of
gradient m Q> y,)/ (- z)=m.

32 'Bgi}vertex A of a triangle iz the point (2, 5} and the gradient
of the/hase BC is 4, find the equation of the perpendieular from
4 bay Be.

A, B, ¢, the vertices of a triangle, are the E'omts {—5,2) (1, :),

4 ‘@3 —‘.‘e‘.) Teq ;ect&velv Find the gradients of BC, €4, AB and the

\equations oE the perpendiculars from the vertices to the opposite sides,

34, .4, B, €, the vertices of a triangle, are the points (7, 2),

(-5, —2), (1 —(]) Through 4, B, ' are drawn parallels to BO, €4,
A8 eqpectlvely s find the equd,blons of the parallels.

35. Prove that (1, 1), (5, 8), (11, 9), (5, 7) arc the vertices of a
pdm!le]ogra m, and tind the Ienvths of its diagonals.
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36. Prove that (~1, 1), (2, 5), (-5, 4) are the vortices of a I‘ig].ii;-
angled triangle, and find the length of the hypotenuse,

. 31. Prove that (2, ~3), (6, 1), (2, 5), (~2, 1) are the vertices of & -
sguare, :

38. If A, @ are the points («, b), ( - b, &), prove that G/ is equal and
perpendicular to 6@, where 0 is the origin,
39. If £, ¢ are the points (a, ), (b, —a), prove that 0 is equgikand
perpendicalar to 04, where ¢ is the origin. AN
- 40. 7f Pis the point (3, 2) and if ¢ is drawn perpopditular and
equal to OF {where 0 is the origin), find the coordinabes of @,

4l. If P is the point (e, &) and Pg is drawn pe{pﬁﬁdicular to and
equal to OF (wheve 0 is the origin), find the codvdinites of .

42. I P, @ are the points («, #), (¢, d) wdspectively and /'R s
drawn perpendicuiar and equal to PG, finds coordinates of £,

20. Oblique Axes. It is someétimes convenient to take as
axes of reference two lines XXOX, ¥'OY that are not ab
right angles; the axes are.hen said to be obligue.® The
angle, o say, between thetaxes is the angle through which .

% X'0X must be turned in order
" to be brought into coincidence
with F'OY. (Fig. 18.)
The only change on the con-
struction of §8 is that PM is
-drawn parallel to the y-axis (ot -
perpendicular to the m-axis) and
PN is drawn parallel to the
®-axis (not perpendicular to the

/ UM L X paxis) I OM=NPep and

ON=MP=y, then o is the
_ abscissa and 4 the ordinate of
Fre. 18. P. The nomenclature is the -
game .a8 that of §8

of P on X'0X and OL=a,
coordinates of P with reference
ugh O perpendiculor to X'0X ; _
T=2tycosw, y=ysinge ﬁ
@=2'—y cobw, Y=y coseca............. (2) -
* This article may be postponed till Chapter IV, has been read.

If L is the projection
LP=y, then o y" are the
4o X’0X, and the axis thro
obviously
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The Section-Formulae of §§10, 14 are easily seen to be
true for obligue axes, and the proof given in §15 that the
euation of the first degree represents a straight line is
alsc applieable when the axes are oblique, When the
equation of the straight line is written in the form

y:mm-{-c

the coeflicient  is not equal to tan 8, where 8 is the angle\
which the line makes with the z-axis (§17). If in Il

15, 168 we suppose the axes to be inelined ab the angle/e,
then n is, exactly as in §18, equal in sign and magmtude
to i{; Now, by the sine-rule for triangles we l@ve so far

as magnitude is concerned,
CB simCAB 0N

7

ACT siu ABC, \‘

 §

When @ is positive, - ABC= w:—@ When f is megative
the numerical value of LCABJIS —9 and -ABC is the
supplement of w—@. In boflijeases we have, in sign and
magnitude, AN

GB _~ snf
I :\10 sin (w—0)

The equation of\\bh(, line through (Jl, 1) making the
angle 6 with the s-axis is,
\% sin @
:’\4.~ y—y:l:m (m—xl). .................. (3)
\‘
It 5%90 the axes are rectangular, and we get tan § as
tl Lu(;oeﬁiucnt of (w — )
~The equation ¥y =«'tand in reetangular coordinates
“Yecomes, by equation (1),
\

a9 gin = {2+ Y cos ») tan 0,
that is, =~ y{sinwcos O~ cos wsin f)=wsin §,
sin 6

or ~sin (w—0)



..s:\}!;X. If ye=ma+o,
Jihes referred to axes inclined ut the angle w, then

1] ANALYTICAL GEOMETRY. [on, m,

- We have thus another proof of the value of w in terms

of 8 and w. If may be noted that

8in 8 ives tan 0 I
Tt = ————— FIVER 1 = - .
sin {m— &) & 1 491 cos o

_ Theexpression for UF* (Fig. 18) is ™
OF=0M?+MP2—20M . MP cos 0P LD
=02t 2BY COS @, ureiriiniienn, W {4)

because in that figure - OM P =180° — . The student will
find that this formula holds for all positichs™ol F; if w is
acute, the angle OMP of the triangle B}’ is obtuse or
acute according as OM and MP have“the same sign or
opposite signs, the position being?yéversed when w is
obtuse. o\

The general distance formula™becomes

PO = (o, — 2, + {3, —@§§%+ 2 (@, —,) (y; = 1,) €08 w...(D)

This formula may lqe:i-é?idily obtained from that of §9.
If the rectangular cootdinates of P and @ are (=", y,") and
(wy, 5 ) themn - .0

‘F"Q{ ={w, _Jz!)z + (' =5 P
but, by equabioh (1), o,/ ==, 4y 1608 @, U =, gine, ete. 80
that we gef™ o '
PQZ\:{(Q“I —ity) +{y, — Yg) €08 )24 (¥, —¥,)* sin? o,
Wh:ie{x}eads at once to equation (5). '

F=wye--¢y are the equations of two straight

(i) the lines are paralle! it My =5}
~ {ii) the lines are perpendicular if L aym,+ (m, + my) cos =0,

Let the lines make angles o, B respectively with the z-axis, the
meaning of angle being that givan in §17. When =4, then
obvicusly My=#g. When tha linezs are ‘perpendicular one of the

angles o, 3 is positive und the ot] ative ;
positive, then ,8? a=90", other hegative ; suppose [ to be

Now = e BB cosa
sin (o =0} T2 s (0~ B) " “egs (w <ay
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and therefore, solving each equation for tan «, we el

. iy Bt 0 14+mycosm
tan a=—mt - - :
14+m coswm Heg 8111 1)
whence {1+ ma cos w1+, cos w)-+many sin? o =0,
oL T 1o 4w cos w -t ayrre =0,

21. Polar Coordinates. The position of F (Fig. 6) will
be known when we are given (1) the distance » of P frem))
the origin O, and (ii) the angle € which the step O.P mkes’
with the positive direetion of the x-axis, thab s, the\angle
through which 0X (not 0X ') must be turned till it\deincides
with OP, These numbers + and @ are called %he polar
coordinates of P with reference to the pole of grigin () and
the inftial line OX ;  is the radius vector and\d the vectorial
angle of P, K7, \d
If the rectangular ecordinates of Zare’z and y, then we
have pe=reosd, y=ASI0 .o (1)

It is msual to suppose 7 to helalways positive; cos 8 and
sin @ have then the same signs as x and y respectively.
We may, however, allow »_teytake negative values, provided
that when » or OP is negative we take € to be the angle
that the step PO (not, OF) makes with OX,

Frow equation (]Q‘ we find _

A= J{et Ryt tan Bzg. ................ (2)

In determining 6 the equation tan 8= y/».1s not sufficient
by itsellf {We must remember that (r being positive) the
glgns féﬁs A and sin @ are the same as those of # and ¥
respechively. . .

We' shall make littlc use of polar coordinates in this
.\ﬁﬁwk.

vV Ex. 1. What are the Cartesian coovdinates of the points whose

Polar coordinates are :

(i) (5,30%); (ii) (5, 120%); (i) (5, 2707
Applying the formulae #=+cos §, y=rsinfl, we find

. 3 - 5 . 5 B3 . wr—
.(lm-ﬁ—;’—*, y=gi () o=-3 :w-%; (jii) #=0, y=—5.
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Ex. 2. The general equation of a straight line when referred to
polar eoordinates is of the form:

f7=a,cos @+bsin 6.
In the Cartestan equation exr+by=¢, put rcosd for » and i sin

for 7 ; we then get the form stated.” The student will readil ¥ zee’thab
the following are equivalent forms, e, 3, P, ¢ being constants : a_ |

reos(fta)=p, rsin(f+3)=q. ) \' \\
22. Aress. Let A, B (Fig. 19) be the poindy(z,, 1)
(23, ) referred to rectangular axes X'0X, A0V, and let

{r. 6)), (1, 62)\1}73 their polar
I\ coordinates, \&\being the pole
B and OX th(‘\init,ia,] line; then
AN

Ty =1Oos 0, ¥, =rsind;

TP, 008 0y, y,=m,sinf,.
«The angle A0B is equal to
, B3—6), and the area of the
! L Ntriangle OAB is

v ¢ 4 . : -%?"1?“2 8in (6,—6,).
Y .

Fu. 1., i"‘;\ - But Sin (99__ 6:)

} =cos f,sin B, —cos 8, sin 8,
and therefors, enoting by A QAR the avea of the triangle
OAB, wediave .

HOOAB=1(r 008 6, . 7,501 6,— rycos f,. 7, 5in ,)
§\ ’ =4y, —ay). ...... (R TPV (1)
N\ This formula may also be proved in the following way.

A

. Y

X O

aLet ' and D be the projections of 4 and J on the x-axis;

mA\J
a\"”

then the triangle OABis equal to the sum of the triangle

ODB and the quadrilateral BDCA  diminishe 1
triangle 0CA. -'%herefoi'e minishod by the

AQAB=AODB+quad. BDCA - 2004
=30D. DB+ DO(DB+C4)—10¢.0A
=40y, 4+ 3 (@, — )Y, + ¥)- ey,
=3y~ o). |
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Weo bave Lhus obtained an expression for the area of the
triangle OAB in terms of the coordinates of A and B let

us apply the formula to two'simple cases.

(1) Let 4 be the point (5, 2) and B the point (3, 4); we

find

AOAB=3(5x 4~3x2)=".

(i) Let A be the point (3, 4). and B the point (5, 2),.
This triangle is the same as in case (i), but the letters.

attached to the points (5, 2) and (3, 4) have been infer=

ehanged ; we find

7NN
E 4 1

AOAB=(8Xx2--bx4)=—T. )

2

L .

The numerical value of the area is thus thé“same as in
ense (1), but the number that measures theNdres is now
negativze. If it be remembered that cpgrdinates are the
measures of steps, and therefore involve direction as well as
magnitude, it i3 not a matter for surprise that a calculation
which involves coordinates shouldJresult in a negative
number ; we may conjecture theb the above difference in
sign will have some connegtion with the two different

senses in which the lines

traced, R

Y O

B X\
< :
7 A
\ Q = X
4 o\: ' 3
.\; . (23] T4, 20,

that’ bound the triangle may be

{#)

Fig. 20(«) shows the triangle of case (i) and Fig. 20 (b)
the triangle of case (i) If we describe the boundary of the
triangle (AB in the order in which the letters O, 4, B are
written, it will be seen that in case (i) (Fig. 20 (a)) the area

lies on our left hand, while in case (ii) (Fi

€8 on our right hand.
€.A.G, C

¢

24

&

2. 20 (b)) the area

A
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We shall now state a rule which is not hard to prove
by examining the sign of
Lryrysin (6, 6)), ,
but which it will be sufficient at this stage for the stude

to verify by testing it for positions of 4 and B in each\bf
the four quadrants, KoY

Rule. If 4 is the point {(z,, 4,) and B the poinf (&, ¥,),

O being the origin of coordinates, the numeriedl -vatue of

the expression J(xy,—w.2,) always gives phb rhagnitude

_of the area of the triangle 0AB; the sign of the expression

will be positive if, when we describe thé boundary in the

~order 0, A, B, the area lies on our left,hand, but the sign
will be negative when the avea lies 6h'6ur right hand,

R
"N\ Y,

&

b
e 21, )

0" We shall now use the symbol AOAB to indicate the
QO wlgebraic measure of the area of the triangle 04D, so
that we have . : :
A0AB=Y(ay,— woyh ) AOBA = F(T3h —@ys).
In other words, an area is, like & step, a magnitude which
may bé either positive or negative® -
*Ing plyin%1 the formulae it is conve
& point £ by the symbols xe, yp ; thus ;
Fis 04 B=1L-I::bAyB - :vByA}, HORBA

nient: to denote the coordinates of

=bruys ~ Tays).



N o,

§22] FORMULA FOR AREA, 41

Tet us now consider the triangle ABC, the-coordinates
of whose vortices are (@, ¥,), (%, ¥o), (%5, ;) respectively
(Figs. 21 () and (b)). We have the following equations:

‘_ﬁOAB: 3 (3”192"':32:91)1
A OBC= (5 — T¥s)
£ 0CA = §{wgy; — 21Ys)- : .

In Fig. 21 (0) AOAB and » OB( are positive and AOCAS
negative ; in Fig. 21 (b) all are negative. In both caség we
have the relation _ N

AOAB+AOBO+AOCA=2ABC, (23 ....(2)

a relation which may be verified to hold'“%late\fer be
the positions of the four points 0, 4, B\Q. Inserting in

equation (2) the values in terms of the ‘eoordinates, we
find for the area of the triangle ABGLE formaula

A ABO= ey, —ah + ’*2’93 *"3733!;3 + a5y, — #1Ys}
=3 {z, (¥, ¥a) +3§’2’@3 — Y+ (=)} - (3)

The second of these formgsis perhaps the more easily
remembered. N )
The formula (3) giv\es the area in sign and magnitude.

~

The student may r'\oivet that if the axes are inclined at the angle w
the area is equul 4o R _
. ‘%,{‘?:,1‘(@'2_.‘73)‘*‘“72(?/3_%) oy~ P SID O i (4)
He may do“ahis by showing that equation (1) beconies
& " £HOAB =5y, — wyy)sinw.
E§'§1‘ Tind the ares of the triangle the covrdinates of whaose

verkibes, taken in-order, ave {2, 7), {%; - (-1 —4).
Uhe area is, By formula (3), '

- LB(— 14445 (—4-T)H(~ DT+ 1)}= - 280,
Fx. 2. Find the avea of the quadrilateral ABCD, the coordinates

of A, B, €, D being (2, 1) {~2, 2, (—1, = 1% 5 =2}
The quadrila,teragl 18 th)e aqin of the triangles ABC and ACD.

AABO=3{2@+ D+~ 2~ 1-D+{=D{ - 2)}=5%,
£ ACD =P (=1 42+~ D(~2- DA} =T
The area of the guadrilateral is thercfore 13.
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BEx, 3. If “quad. 4BCD” denotes the area of the guadrilatera]
ABCD in sign and magnitude, show that '
guad, 4 BOD=A04B+ AOBC+ A0CD4 210D,

" The proof ix a very obvious extension of that piven in the text
for the relation numbered (2); it can clearly be extended to A0,
polygon. :

Ex 4. Plot the points A(2, 0), B(8, 0), (8, - 2), IN2, 5) midjoin
AB, BG, 0D, DA. ' o\

It will be noticed that D ecrosses 4B between diand B a
quadrilateral of this kind is called a crosg-quadrilaterak™Iis “area”
calculated by the rule of Example 3 s K7,

25+ (—5)=9.

AOAB+ AOBC+ AGOD+ AODA=0+(~B) 32

-Ex. 5. Plob the poiuts A(a, 0), B(d, 03, C(IONDYD (e, d), and show
that- the area, of the quadrilateral 4 BCD, whether “eross® or not, s
$(b—a)(d+e) or § AB(AD + BC), where A,\Bt\:l D, BC are stepa.

X
"

EXERCISES VI.
Calculate the area of eachfq’f"’ the triangles and polygons whose

vertices are specified in Wxdniples 1-9 ; the perimeter is to be traced
in the order in which the veértices are named.

L (5,7 (=3, 4)0,>0). 2. (3 1) (4 -2), (-1 —2).
5 (L5 6 SBT3 -9 4 @,),0,8), (40
5. (4, 4),'(._—:3, B), (=5, —5), (5, —2).
6. (2,346, -2), (-2, ~4), (-5, 0).
T @0, (1, 4), (-3, 2), (-2, -92), (2, —3).
‘\,18;"('2, =1, (6, — 1), (~1; 1), (3, B).

) ‘o 9 (4,1) (-2, 5), (0) _2)7 (21 5), (_4s 1)’

W\

10. The coordinates of A, B, ¢! are 6,8), (-3, 5
tively and P is the point (x, ) ; show tl(mb » (3.0 4,

APBC zay—2

—2) respec-

ANABET T T
11, Band ¢ are any two points on the straisht line gi 1
. wo given by the
egualgon awtby+e=0, and Plx, y), Py, yj are any two points
that do not lie on the line ; show by consider ng the sign of the areas
of the triangles PR, QBO that the expressions '
e +hy +e and Gzyt by 4o
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are of the snme sign or of opposite signs accovding as 2 and € are on
the seme side or on opposite sides of the line.

12, If (z, ) is any point collinear with (#, g,) and (x, 3.}, prove
that
@y —yod— g (@ — %) + 1Y ~ 2y =0,
snd find the equation of the join of (2, 5) and (-7, 1).

13, From the formula for the area of a triangle deduce that if a \<\
varialle point (m ¥) moves on a stralght line, then Ax+ By+- O='C(’}}'

- where 4, B, € are constanta \

, O
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CHAPTER IV. &7

REPRESENTATION OF GEOMETRICAL, BOCI
BY ANALYTICAL EQUATIONS. THE STRAIGHT LINE.

23. The Eguation y=mx. Axes and scale-units being
chosen or assigned, a straight ling“thirough the origin is
completely specified when its gradient (§17) is specified.
But we know that the same strai‘ghf; line may be represented
by an equation in #, y. Let & straight line through the
origin have gradient m ; (it"is required to translate the
defining conditions of thede into an equation. _

Let @ (=, y)-be any point on the line (Fig. 14). Let M be
the projection of Qém X OX.

The gradient n}\che line is MG or 7
X\

oM~ &
,1_;=m;
< @

N Sy=me

\Sl‘nce (%, ¥} 1s amy point on the line,

O\ '

o\ y=mx
#\% s the equation of the line.
~O
\/ - 24 The Equation y—=mx ¢,

Let a straight line be
specified by its gradient m and its intercept ¢ on the y-axis;

to find its equation. .
Let P(x, 4) be any point on the line {Fig. 14), -
Let the line cut the y-axis in € _

Let OQ be the parallel to the line thy

ough the origin.
Let MP, the ordinate of P, cut the P

arallel in @
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‘Since the lines are parallel, their gradients are equal (§19).
. gradient of OQ=m;

. ‘%xm;
. MQ=m, OM.
But _ MP=MQ+QP;
 MP=wm.0M+0C; PR
S Y=t e _ ™

But (#, ¥) is any point on the linc; hence
yomrto °
is the equation of the specified line. O '
A
EXERCISES VIE(Y®

" 1. Find the equatien of the strai Uht lms whlch passes bhlough the

point (0, 2) and rises 5in 3. . \
_ .= gradient —"‘.g e=2;

hence y=ma+c beco‘me,z. y= 1‘«1& or 5x—3y+6=0, which is the
required equation (zee Fig. ]4).

2, Find the eguation of tbe straight line which passes through the
point (0, —2) and falls 4.n 5.

: m&él‘admﬂtz-—g; c=—2;

Loy=mato=— Lk ‘.. ;' that is, 42+5y+10=0 is the equation of
the line. R

3. Find ﬁ\..equmtlon of the straight }ine of gradient —§ whose
intercept, on\i‘.he y-axis is 14

4, EQ(I’ ‘the oquation of the straight line of gradient 3 whose
mber’oaj)t on the y-axis iz — 24,
5 Find the equatmn of the straight line drawn through (0, 2) to
md-l{’e an angle of 30° with A"0X. .

\ 8. Find the equation of the straight line whose intercopt on the
w-axis iz — 22 and which makes an angle of —60° with A"0X.

7. Draw the graph of
: (i)_y=2x+1; (i) y=~-3x+2; (i) y=5x—b;
(%) g=-fo-1; (v) y=3z+4,
- [(#) passes through (0, 1) and rises 2 in 1.]
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8. What are the gradients of the following lines?
() y=20+3; () y=—20-1; (i) y= —fo+7;
(iv) =242 (v) By=—2u+4; {vi) Gy —w=3;
(vii) Ty +32x+1=0; (vii) 8z—4y+5=0; (ix) Tx+dy=0.
9. What iz the gradient of the line sx+by+e=01
10. What i3 the gradient of the line /o +y/6=17¢

11. What is the gradient of the line (y— 8)=m(r—-2), and gf\the
line y — gy, =m{zw—2z,)? NS ¢

. Ve
12. Use the gradient formula, viz. %"——{1=m, to establish the equation
1 A\, 3

¥=mz-c ch

i—:%—gradient_ of the line joining (0, ¢) and (2 y};\}:ence r”%‘"rm
or ¥ =ms+e. : .

13. Druw the graphs of :',\\"

() 22—y +1=0; (1) Sv+dymdn® (i) br=y+3;

25. The Linear Equation. Every straight line, considered
with reference to a systeni ot rectangular axes and scale-
units, has a definite gradient and makes & definite intercept
on the y-axis. Henég\every straight line may be rcpre-
sented by an equ@{:i@ﬁ of the form 4 =mm ¢, which is an
equation lineay v{}\df, % (§15).  Conversely, any equation of
thc_a form y=mr3c represents a straight line. 'Fo prove
this we haye enly to reverse the steps of §24. Thus, let
P (Fig. 1400¢ any point on the graph or locus of y=ma +¢.

Throu%blfl.\the origin draw the straight line 0Q of gradient .

Let € be the point (0, ¢) and let MP, the ordinate of P,
mQ&OQ in . Thon 3 , the ordinate o

al

AN m=gradient of GQ

M‘; _MQ.
\ oM’
e ﬂf@:m.Oﬂ’L
But Yy=wmnix+tec;

o MP=m . OM+0C;
~ MP=MQ+0C,
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oo MQ+ QP =MQ+00;
o QP=00C
Also QP is parallet to OCL
.. OP is parallel to O

'Fherefore the locus of P is the siraight lihe through the(™
fixed point ' parallel to the fixed line OQ.

Now the general linear equation dxz+By-+C=0 ma}mbé
written in the form : O

L 3

~(Ber(-5) =0, S
W\

i.e. in the form y=mz+ec. N4

Hence the conclusion: amy straightlhe wmay be repre-
sented by o limewr equation in o, o, @hd, conversely, any
linear equation in x, y representdg)straight line.

The cases of lines parallel to\the axes may be treated
separately ; a similar conelusion holds.

%
*

N

26. The equation y—yy=m(x—x;). If we write the

equation e N
1 ,H‘_yl—'m'(m_ml)
) A\
in the form  , ,{) =% _ m,
: N\ @—uw

we see (318) that the gradient of the straight line joining -
(&, v tolg ¥), any point on the locus or graph repre-
sented ’pg(the equation, is the constant m.

e (v -y)=m(z—x,)

rapresents the straight line, of gradient m, through the
fwed point (xy, yy). ’

27. The equation ¥y —y¥, =§1 _22 (x—x,). If we write the
17 %3
- equation Y= = 3’1;3& (w—a)
O =i,
in the form Y-th_N—¥

&ty xl—a’:z
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we gee (§ 18) that the gradient of the straight iine joining
the point (&, ) to (2, ¥), any point on the locus or graph
represented by the equation, 18 equal to the gradient of the
line joining (x,, 4,) and {,, ¥,).

Heace N St £ ~x))
vepresents the straight line througl the points (o, )
o (g, Yo o\ N

\

Ex. . Find the equation of the straight line which paghes through
the point (2, 3) and rises 2 in 1.

In the equa,tion H—gy= g};_.(,g: — &k 4 s\ -
b ay=2, ¥, =3, m=231=2, ’
The required equation is  » - 3=2(r— 2y 4 \\ J

or 2%~y —1=0 {Fig, 32)
T Y E . :5‘; !" T T
- b : A vy I! S J_
- e: e =
H -
:___ AT ! < |~
~ 7 : ~+H
- - !
\ Snund mnunudREe oM iLad
SO T e e e ]
A “THIH
N B R R e e
.y : “\ B _—l— -+_| i I i L3 T T 1T 1
\\ 3}

Fin, 22,

Ex. 2. Find the equation of the
*he two points (-4, 1) and {7, ~ ).

In the equation ey 1T ¥,
& ¥-u T~ (w—ay),

straight line which passes througn

‘put T=—4 g=1, 2=, y,= 5.

O\
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We got I y—1=-_1+ 2 {w+4),
i.e. y—l——-—-- (.z,+4)
which becomes Gy 411y + 130 (Fig. 28).
S T
== M H ] 1 L] A
5 i '\”\
: '\
y T b —1- B e
] 1 I - 2
P ! . S
g® B HRO X
; N I NN f
i i‘h"“-\ . T i
] T ] - N
H [ : ,\.—‘ _’5 1
T - i ; T \s\:,'\
B i = -]
; : B - =
[ i XA ! f |
AT [ b |
.: Fis, 23,

N\
Ag g check, nole tl\j\‘ﬁ(’—‘l)—{-ll 1+ 13=0,
] 7+11(—a)—| 13=0.

N

~O7  EXERCISES VIL

ifid tho equation of the straight line which passes through
(- 5 and falls 3 in 2.

2¢.F1nd the equations of the two straight lines which both pass
thzough the point (4, —5), one of gmdlent 3!4 the other of gradient
s—-‘& 4. :

3. Find the equation of the join of (2, 3) and (7, 8).

4. Prove that tho join of (=3, 7) and (-1, ), and the join of
(2, —4) and { -5, 3) are parallel, and find the equations of the lines.

5. Prove that the line joining the points (-2, 6) and (0, 4) is

perpendicular to the line Jommg (2 4} and ( 5, —3), and hnd the
equabions of the lines,
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6. Through (0, 1) is drawn the parallel to the line Jotuing (0, 0),
(3, 4); find the cquation of the parallol. .
[Use y—y=mls—m). 2,=0,z=1, m=4/3.]
7. What is the gradient of each of the following lines ?
(i) y=2x-3; (it y—-3x=1; (iii} w440 ~7; _
(iv) 2r—3y+1=0; (v) 3x42y-2=0; (vi) awt byte=0.  m
8. Prove that the following paivs of lines are parallel : .
(i) 2¢-38y+1=0 and 22-3y—58=0; ) '\“.\
(i) 2+2y=7 and 2e4+4y-13=0; O
(iii) ax+by+e=0 and aw+by+d=0. N
9. Prove that the following pairs of lines are perpen'gi.cular :
() 2248y +1=0 and 3z- 2+ 1720
(i) 52— 2y+3=0 and 2wy N0 ;
(i) ax+by4e=0 and bie— gaphd =0.
10. Find the equations of the sides of ,tl;(::tl"iang]e whose vertices
are (3, 2), (5, 7), (8, 1). AV
11. Find the equations of the modiins of the triangle whose
vertices are (-5, —2), (4, ~6), (1, IR

12. If 4, B, € are the pointa W) 5, (3, 1), (4, 8) respectively, what
is the gradient of B and ofy the perpendicular AD from A 1o BOY .
Find the equation of 4D, N
13. If 4, B, ¢ are th@\phints (5,-~3), (=5, 3), (4, 7) respectively,
find the equ’a,r,i:m of thé\ine joi ning’the middle pojint; of AB and AC.
14. Find the eqiation of the perpendicnlar bisector of the join of
{2, 3) and (5, — 2\ , JYoes the point. (8, 4) lic on the bisector ?
15, Which GF the following sets of points are collinear ?
{i) ) }1..]:)} (2, 2), (8, 8); (i1) (5, 4}, (0;.1)3 4, - 4) ;
{l:u{’( H '_-2)1 (_4! 1)3 (%: 0); (i“r) (I-v 3)7 (—.2! _“6): (41 12)‘
1 ind the point of intersection of the lines 2w—3y+1=0
LEY~2=0, _
\‘ (Bolve the equations as simultaneons equations.).
"\ 17. Find the point of intersection of the
\/ (—2 4), and the join of (3 Tand (—11, -9).

18. Find the orthoeentre
triangle 4B of Ex. 10,

¥

join of (5, —2} and
(e, intersection of perpendicnlars}) of

19. Find the orthocentrs of triangle 4 8¢ of Ex. 11

20. Find the intersection of the mediang of triangles 4B in
Exs 10, 11. .
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98. Farallel through (b, k) to ax+by+c=0 In geometry
it is frequently necessary to comstruct a parallel through &
given point to a given straight line. If (A, k) is any given
point and ge+by4-c=0 is any given straight line, the
following rule enables us fo write down at once the
equation of the parallel through (k, b} to ax+by+e=0.

Bule, [n the cquation azdby+e=0: () delete t:’;s\.
abaolute term ¢; (i) replace @ by (w—F) and ¥y by (= \Z:)’g‘

the equrtion A(x— D) (I —K) =0 oo L)
so obtained, is the purallel through (k, k) to ON
am+byte=0. ~N

Proof. - The gradient of the straight ling 2+ by+e=0
18 — a,b s \\"

The gradient of the straight line @@= B+ i{y—k}=0
is —ajh AN

Therefore the lines are parallel ($19).
Again the lne (1) passes through (h, k) if

alh—h) ;E{b'(fc —ky=0,

and this is true. The rule 18 therefore proved.

( Tx. 1. Find Lhe eqtu&ﬁ?t}\n of the parallel to 3z —2y+4=0 tlrough
2,7 e
By the rule, thejequation iz
o~ 3(x—-2)~2(y—-T=0,
that iz AW Br— 2y 8=0

p 3

Ex. 2. .»{E"i}d the equation of the parallel :
,\\ {1} through (3, 3) to 2o —y+1=0,

*':'; . (11) 7 (3! J) » =8t
o Giy . (~L,2) , Brtdy-T=0,
3} - (iv} ” (21 -1y, 33-%y-3=0

{x} B (=3 —.1) B ?;’=2-'?5:_ 1,
(vi} o the origin ,, 2x—Ty+5=0.

29, Perpendicular through (b, k) fo ax+by+c=0 Tt i
necessary to be able to write down the ecquation of the
perpendicular let fall from a given point to a given
straight line. The following rule is used for writing .
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down the equation 8f the perpendicular from- (4 k) to
az+by+e=0.

Bule. In the egualion ox+by-+e=0: (i) delele the
absolute term ¢; (1) change the sign before the term dn y,
(ill) enterchange the coeflicients of » and y; (iv) replace

by (—h) omd y by (y—4k); the equation Q
b(x—h)—a(y —K)=0, ... rooiieanns RUN
so obtained, is the perpendicular through (h, Iy to  OO% 7
aw+by+e=0. :n}"

Proof. The gradient of ax+by +c=0is — c';{?ge:": ’r?';-l, say.
The gradient of b(x—h)—a(y —k)=0 isdfe= My, SAY.
And : Yy Wy = —EXE: N
b7 a O
th evefore the lines are perpendiculaing 19).
Again, the line (1) passes through' (%, k) if
' b(h—hy—gth—k)=0,
and this is true. The ru[&j;g’_“tjlerefore correct.

$

EXERCISES IX. _
2@1_. 3§i;_1§=%:fe eq%&'{{m{’ of the perpendiculur through (5, 1) to
Begin with (% Zr—3y+4=0. '
Follo®ing (1} of Rule, we get‘i’.r—iiyzo,
y :.:; (ll) " » 2'1'-34_3."7:0!
i) v w Br42y—0, '

.\\”' o {iv) o » Ar—5)+2(y—1)=0, ...ccr..(A}
o o de B9y —17=0. '
'&,;\'Vlb}.l a Tittlo practice equation (a) can be written down ab once.

_"\; v/ 2. Find the equation of the perpendicular :
\, (i) through (5, 2) to 3w —dy+1=0,
(.u) on (33 1) » 2‘”'{_5.9"1"7:0)
: (1'11) s (2,8 n ¥=%%+1,
(iv) " (-21y Fobdy =4,
(\') ” (27 —8) w O 3.?/:8:
o, (1 -9, a2y — 9=0,
(vii) » - theorigin | 3w —dy =15,
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3. Find the equations of the paiallel and perpendicular through
(-1, 1) to Te— 2y +3=0. '
4, Find the equations of the parallel and porpendicular through
(-2, —5) to Su+8y—4=0.
5. Tind the cocrdinates of the orthocentre of the triangle whose
- wertices are (0, 2), (=1, 1) {2, 7).

8. Find the coordinates of the foot of the perpendicular let fall \
from (1, 2) to 3w+4y+9=0. Find also the length of the perpgﬁ—\\
dicalar. ' L™

: O

50. Length of Perpendicular. _ \,‘{;‘

If o perpendiculur be let foll from the poigtXe,, i) to
the straight line ax+by+c=0, then the naperical value
“uf the length of the perpendicular is v

| axctby te o0

_ i N

Let (,, 3,) in Fig. 24 be the fp@ﬁ,df the perpendicular.

The equation of the perpendienlar from (z;, ¥ to
az+by+e=01s (§ 29) b(w —a) = a(y —4,)=0.

\§' ' e, 24,

SNow (¢, /,) Lics on this line; _
"\f:t\zherefore bla, =) — Y=y =0 coovierciiiiinien, (1)
\ Again, (z,, y,) lics on the line ax+by+c=90 ;

thercfore tiry+ by, o=0.

Subtract az, +by, +¢ from both sides:
then alwy— )+ o{yy—y = —(we, + by, +¢) .(2)

But, by_ (1), blmy—ay)—a(yy—y,)=0.
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Square and add
then (@25 {(aty —a)'+ (g~ 1) = (amy + Dy 0

{az, + by, o)

S @y — P (Y -y, P = 1“37_}_{;3_

.. by Distance-Formula (§ 9), y

d ’ (etiey o+ by, +(:-_)2~_

TN f‘\,,’“\'
i.¢. length of perpendicular from (z,, ¥,) to «zx + by Ge=0

is the numerical value of \

“square of distance from (x;, 4,) to (z,, ¥,) =

N
az; +by, +o

L ¥

VI )

EXERCISES X. /"
1, Find the perpendicular distance "}Bhe point (-2, 3) to the

straight line 8z — 4y 4-2=20. O

. B +.5 e

Use the forwula, perp. dist, ="2L YT C
ol porp N

a=3, b=—4, ¢28] @m=-2, y=3.
D). 342
Therefore perp.-dist, = H_Dr(-4). 342
..\\,' CZNW gy
15
S
2. Tind the distanee from (4, 7) to Bs— dy+2=0,
3. Pind &, distance from (4, 8) to the line x=p  Vorify
geometrically ™

] %cii\t“ha distance from the arigin to x+y+1=0. Verify
cally. .

4 F
ggomgi, !
&, Frove that the points (1, 8) and {~7, —8) are equidistant from

thedihe 32— 4y £ 7=0.

» nunerically,

\:\, '8, Find the distauce between the parallel lines :
N ) ety +1=0, sry-1=0; (i) 3z—4y+9=0, 8x—4y—1=0;
: (iii} 20— 3y+4=0, 47 ~6y -7 =0,

T The straight line 3x44y—5=0 touches
is (2, —3) Find the radivs of the circle,

8. Prove that the Jines dx— M +5=0, dv -3y 50,
82 +4y —5=0 all touch the circle whose centie 18 the ori
radius is unity,

8 circle whose centre

3r+dy+b=0,
gin and whose

"N\
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9. Prove that one of the common tangents to the circle, eentre (0, 0)
and radius 2, and the eirele centre (4, 0) and radius 1, is

3.?;+,J7 .y—8=0.

10. Show that 47—3y—26 touches the circles whose centres ave
(11, — 2} and (- 11, 2}, and whose radii are 5 and 15 respectively.

11. Tind the value of ¢ if 3w+4y=c is a common tangent fo the
cireles whose centres are (1, 3) and (-3, 1), and whose radii are
1 and 3 respoctively. - RO

12, Prove that the product of the perpendiculars from (e, l‘ﬁ\and
{—¢, 0) to the svraight line broos @+ aysin f=ab is b% avhere
=54 . . NG

13. Prove that the point (2, 2) is equidistant ;fﬁqm the lines
2z —y+2=0and x—2y+6=0. : C \J

14. Prove that the point (1, 1) lies on one of\the bisectors of the
angles formed by the lines 4v—3y+1=0and 34247 +3=0. Illustrate
by a figure. ) . .

15. If the point (&, y,) lies on a bisec{’ior' of the angles formed by
the Tines L+ By+0—0 aud wo+by4e=0, prove that 47T BN +0

ey + by e . RN _ Ny
and 2L S yrg numerteally gqUal,
VB An

~

16. Tf the point {z, ;) Fes ‘on one of the hisectors of the angles
formed Dby the lines 72<57+1=0 and 5x+7y+3=0, prove that
Ty — 0+ 1 and v+ ?31'453 are numerically egual,

17, 1f the poing (}}3{1) lies on ome of the bisectors of the angles
formed by _the'hnes 4r-3y+2=0 and 3z+4y+3=0, prove that
4oy — 3+ 2= :;-\(‘.3,?514-43/1—1—3}

18. If the point (z;, %) lies on one of the bisectors of the angles
formed bwthe lines 3x—»+2=0 and 243y +3=0, prove that eithef
2y —»%%:.I or else 4, + 2y +5=0.

¢ .
19:.’ Prove that the equations of the two bisectors of the anglas
fdrmed by the lines 52— 3y 420 and 3% —5y+5=0 are

N

\™ B —3y+2= 4 (3xr—5y+5).
20, Prove that the Dbisectors of the angles formed by the lines
2w+ 3y+1=0and x— y+4=0are given by the equations
2e4+3y+1 0 x—y+4
gt = 7
V13 2
2L. Provo that w+y=3 and w—y+41=0 are the biseclors of the
angles formed by the lines 3 — 2y +1=0 and 22— 3y +4=0.
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22. Prove that the biscctors of the angles formed by the lines
ux+by+o=0 and Adx4 By +C=0 are the two lines specified by the

squatious arbbyfo_ Ak Byto
Va1 N AT F A
31. The Freedom-Bquations of a Straight Line. I\

Let 4 (Fig. 25) be the point (¢, ¢). et P, y) be any
point on the locus specitled by the equations @=g4:bf;
y=c+dt. Join AP. Let the parallel to X'OX #liydugh
4 meet the parallel to Y'OY through P in.f- Then
AQ=x—0a and QP=y—c But mz=a+bi, enet-a=bt;
and y=c+df, or y—e=df. A S

YA v

/’\”\

&
< [ H M X
A\ C
: ‘:\’J _ Fic. 25
H\@ée 4Q=bt, QP=dx.
1 T herefore, gradiont of AF = <f = @ - 22
" \ o AG ThE T E

Therefore the gradient of AP remains constant while P
moves along the locus, Henece the iocus of P is the
straight line through A(e, ¢) of gradient d/b.

That is, the freedom-equations

e=a-+0t, Yy=ec+df

represent a straight line through ; £
gradient djb, . gh the point (o, ) o

\;



ot

£ FRERDOM-EQUATIONS. - 7

Tox. 1. Make a tuble to show corrospending values of % #, ¥ when

w2 df, y=1436 Draw a graph of 2, y and find the constraint-

equation connosting z, ¥.
I

¢ -3 —1\ 041 ‘ 2 ‘
7 6} 2| 2 6 10
7 — % -2 L 1 | 4 i
T i . N
2 AN
PR\
Ve TR Q

T

T E - | .
1" . " 7 et
P B N s M e AN
Tt T e T e T kLS
s N1e. 26,

Corresponding valy &'af x, v are plotted in Fig. 26, the graph of
@, # is the straight lingdof Tig, 26, To find the constraint-equation,
1 — 3 S —1 - - i
2 -_=t.zm£1"y 3 ! =¢; henee &T2='g'3_1 or 3 —4y—-2=0,

N2 k

Ex. 2. Prowe that the straight line whose freedom-equations ate
#= — 2+ 38, f=23 — 5¢ passes through the points { =8, 13) and (-1+4, 2)
referrediboaxes OX, OF; and find the corresponding values.of 7.

we have

" N\ When o= —8, we hiave ~8=—2+3f or == —2;
PN N ‘When y=13, we have 13=3-5for t=—2;
a\" When = ~1-4, we have —1'd= — 24+ 3¢ or t=02;
\ 4 - When =2, we have 2=3—=5¢ or {=0'2 '

Ex. 3. Find the equations of the parailel and perpendicular to
#=—243f y= -5~ 4 through the point &=2, y=—23.
The gradient of the given line {s 5% or —%, by abeve section
Hence the required parallel is (y+3)=~% (z—2) or 4o+ 3y +1=0;
- and the required perpendicular is (+3)=% (z — %) or 32~ 4y ~ 18=0,
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EXERCISES XI.

1, Prove that the straight line whose frecdom-eguations are
z=1+{, y=3+2¢ passes through the point (1, 3) and bas gradient 2,
Draw the lHne.

2. Write down freedom-equations for the straight line whichy
passes through (3, 5) and has gradient 3. Draw the line.

o
8. Prove that (-1, —1) is a point on the straight line <\)
7=2+43, y=149 .if
Draw the graph of the line. < "f":
4. Prove that the straight line A

¥=3+2f, y=b-t¢
is paruliel to the straight line \
#=2—4u, y=1+2u‘.2\ v

5. Calculate the coordinates of tle 'Fnin t of intersection of
@= =3+ y=2+3 and =445, y=U 5% Graph the two straight
lines. . \

[We require —3+2t=4+5u add® 2+3¢=1-2 simultan eonsly.

From the corresponding values ofy7 (or u), ealeulate %, y from the
given equations, \™

\

6. Find the point of intersottion of
=23, yﬁa“l S8 and we=1— 2, y=21 3u.

7. Prove that t{{ ‘thtee straight lines, specified by the following
- &quations, are copourgént, and find their point of intersection :

N a2ty =842 i)
A #=14u, y=3+iu; TR )
o E=4=0 y=5430. Loeeresrerern ()

o~ &/ R . ]
S:\F.md the constraint-equation of the line represonted by
O e=4+3t, y=—317

M\:"\;{:From first equation, t=£;% 3 from second, 32@- Henee
\ N/ . . ¥
;o r—4 +3 . - .
\ - 297 » 8 Tz~ 3y=2387 is equation required.]
9. Fiud the constraint-equation of the straight line given by
_ = - 243f y=1-_¢ '
10, Find the constraint-equation of the straight line
F=u+b, y=c+tdf
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11. Prove that tho straight lines
w=at+bl, y=ctdt

and a=a+bw, y=d+dn
are (1) parallel if &b =d'/&"; (2} perpendieular if 55 +dd'=0.

12, Find freedom-equations for (1) the parallel, (2) the perpen-
dicular through (1, 2) te #=2-34 y=3+2¢

13. Prove that the straight lines p {:‘\\f

=52, 1;-—4+‘3£- w="T+6u y=—11+4u :”:\ -

are perpendicular, and find their point of intersection. Dra)w the
graphe of the Tines.

14. Prove that the parallel through (4, F) to \\"
r=a+b, y=ctdi \\\\
may have its freedom-equations written in the ,fn&\m
r=htbu, y= k-k((ﬁc\\v
15. Prove that the freedom-squations &f :tﬁe perpendicular through
(&, %) to r=a+b, g/%ﬂ-a’t '
may be written w=h+ dz&g‘g( = b - b

7
QN
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CIIAPTER V. O\
THE STRAIGET LINE (Continued). <

o
"
!

82. Different Forms of the Linear Equation. ,fl"\ﬁ‘e;following
gix forms of the linear equation Awx+ By XO=0 are im-
portant : o O

() y=mx+ec; @ x< 1=m (X —X1);
@ ¥y—¥y1 = ¥2—¥1 :
X—X; Xz-X1

ELT_..
Riaak

&N x—-—X _—
) xcoso+ysino=py ()] X-R 9,

(1), (2) and (3} have zil"t%ady been explained in § 24, 26
and 27 respectively. Q :

Oy
o~
P\ B~_p
:’\ml
0¥ ¢
O -~ oM A
,\Q\,w : ¥ro. 27

(4) The eguation E.{-% =1

~ Let a straight line not passing through the origi t
the m—axi_s at 4 and the fy—gxis a-{? B. Lt’i 8] A(;?::%IE =m lfe

Let P(x, 4). be any point on the line; then 34_?{:1_
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Proof. Let M be the projection of P on the. w-axis
(Fig. 27). ' . : :
Then as 048, M AP are cquiangular and therefore similar.
MP MA

Therelore — ;s ="7% for all positions of P, where M P,
: OB~ 04 e ~
OB, A, 04 are all steps. \ \
Hene MP_ 0A—0M &
enee 0B~ 04 ' $)
that is, y_a—v N
b a
AN
- T Y O )
o (.E_+E) =L )

%

. RN .
Fx. 1. If 4, Bare the points {2, 0} and (Q;;Ej, find the equation
of 4B, :

Here g=32, 5==3; henco '§+%=1 bgcén}&é :4—%:1 or Jx+2y=186,
which is the e(iﬁ&tion of 4B. & “
Ex. 2, If A, B are the points (:— 2 0) and (0, 3), find the equation -
“of 48, _,".’3 o
Here o= —2, b=3,  ITengdthe required equation is ;ig-+‘g=1, or
3v— 2y +8=0. O
Ex. 3., Find the eq‘\mﬁién of the line joining {— 3, 0) and (0, —5).
Ex. 4 TFind the‘eguation of the Iine'joining (2, 0) and (0, ~4).
Ex. 5. Find{dn sign avd magnitude, the intorcepts on the axes
of ¥ and g made by the lines .
(y2disy=1l; @D 3w—2y=4; (i) Sed+Ty+4=0;
N -t {iv) 3;;:-5y+4=Q.
Q’)}ﬂx«i—.‘iy= 1 may be writben 2-1-? =1, The intercepts are § on O

5 3 .
m:d”,r}d 1on 0F. (Otherwise, put y=01m 2+ 3y=1, then 2z=1 or #=%;
\gain put #=0 in 2+43y=1, then 3y=1 ory=1)

33. The Fquation x cos +ysinoe=p. Let a straight line
euf the a:—ax'ils at 4 and the y-axis at B (Tig. 28); let & be
the foot of the perpendicular from the origin 0 on 48;
let angle XON=o and ON=p If Pz, y) 1s any point
on the line, C .
then - % cos oL+ 8in oL=1p.
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Let N be the point (x, ¥,); then @, =pcose, ¥, =psinn. -
Hence the gradient of PN (or AB)=Y "%

o
_Y—psina
S w—peosol T O\
Y] Lo
Jk . ‘\\ A
) »O
P ~\
N P QL)
A WX
/ Fe) ,‘§\~A\
F1a. 28..
But the gradient of ON s:“ban o
‘~:. sln ..
\'\ T eoso’
) - COS L
there_fore the gra@\n‘o of PN= TR G trrerereeeenens {(2)

From (1) andy(2), we get
P\ % y—psino _cosa,
/\“’ #-~-peosot  sina’
therb(ore @ €08 o+ sin o= p (sin® ot 4 cos? an),
0r~\ xzeoso+y sin o =p,
{\zmce : sin® ot 4-costor=1,
\/2 Cor. 1. TIf aw+by=c (¢ positive) be put in the form
. ) b -
& oS oL =p, then p=-_° =-.
CoS &L+ 8in (=, then p N/ and tan o= a
. h
For if ta;no:.:a, We may put cosa_—ﬂ(:;— and
b
JETE

sino=
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But ar+by=c.
Divide both sides by ~/a?-+52; then
) e . h ¢
x. m—f'rf3+'5§+ Y . NE T (3)
Therefore xeos oty sin ie=-—==,3; &
’\/u-'z + bz 4 “\'
N\
or xeos oty sine=p, O
« N7
if S N
p JeE b ) \“\ s
Cor. 2. The length of the erpendicalar fl‘{flj\l 2, 4,) to
2eos Lty sine—p=1 %
is - i o
£ #y COB 0L+ Y BN (X.-TKV
\\. D ‘:s’:;}’ .
R
SN
B~ O
Q
O H
e A C~X
i'\:{. Fuz. 29,
Fiest, let us. {ind the equation of the parallel through
Lo y,) to zeosa+ysino—p=0,

~
Nt

or

hat is, the parallel CD through P(z,, ¥,) to AB in Fig. 20.
By $28, the

equation of €D is
(2 —2,) eos o+ (y —y)sin =0
# cos oL+ Y Sin oL =1, 608 a4, SIn .

Hence OK = length of perpendicular from the origin to C'D

G.4.G.

=, CO8 L +y, sm
b
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But  OF =lenglh of perpeudicular from the originto AR

=y :
therefore H P =length of perpendicular from (2, y,)to AB
=NK
=0K —ON N\
=1ty €08 (Lt sin oL —p. L\

Cor. 3. Going back fo equation {(3) of Cor. ,li:.\}e see
that the length of the perpendicular from Jfwmy," %) to
ax+by4e=0"3s ’

as; + by, +¢ (O
LTS -\

VP B $V

Ex. 1. Wurite the cgnation 3v+4y="7 in !;hé\ff)rm

. & o8ty sinm‘;—;ﬁ."’

Leb tan =%, so that we Ny write Sidet =+ and cos =2

Now divide both sides of 3o+ 4y =7 Wy 5,

We get
or

Ex. 2. Find the len
the line 44 +3y =8,

Putting tane, =4 apd proceeding as in Fx, 1, we write the cquation
42 +3y =8 in the fo@ ) s

By

. 2 N
BN T=T

& 008 &y 5in o =1
ok

T

gth ob “the perpendicular from the orvigin to

7 xcos oo sin o=
where tan o= N Hence the length of the perpendicular from the
origin to 41:':{-\%3;=8 % (Op §30)

Ex. 3‘~‘\\Yyite the equation 52+ 12y =8 in the form
& #oos oty sin o=y, _

Bx4 Write each of the following equations in the form
Fgetysin a=p ; state the values of tur o znd p.

AN () sotigy—13; () 152+20y=54;  (iii) Br~dy=T;
e 2 .

\ W ) 12;;55y=10; (¥) 2 +3y=4; (vi) 3z +y+2=0;
(vii) patgy=r; (viil) lr+my+n=0, '

34, The equations )f:_xlzy,__‘ﬁ=r'
cosG  sin@

Let 4 be the point (x,, 1) (Figs, 15, 16, pp. 28, 29);
throqgh_ A draw the stfaigﬁt finle of gradient ta:n%li then if B
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is any point (2, %) on the line and AB=r, we bave
‘ ey Y= .
cos@ sind :
Let I7, K be the projections of 4, B on X’0X; let C be
the projection of B on the parallel to X'0X through A.

Then eosO=7p=72p= 75 ~ 7 O
"Iherctore i W :‘L\l |
_c()s 9 —_— R E IR N R ) (--’:}‘;--( )

... OR KB—EC_KB-HA G-y,

S].Il'l]]aﬁ. l}a =11 6—- J{m—- . IB— _-— AT}& T-

Therefor Yo N,

.Lhulngle Sy ik \,\\\.: ................ (2)

From (1) and (2), we have - 5N

ety Y=l
cos @ sing
Ex. 1. Thfough the point ;i(:%;'ziii is deawn the straight line making
an angle of 45° with the w-adise It meets the line x+y=10 at B,
find the length of A58, "4
Ex. 2. 4, B are the pu\1rq (e, O), (b, 0), and & is the point above
the z-axis such that\{btr"trizmgle £A8 is equilateral ; find the eo-
ordinates of £ 4
35. Angls Jetween Two Lines. If the equations of two
lines are givén, the lines could be graphed and the angle
betweernbhem measured. Hence from the equations it 1s
poss\i'ﬁie”by caleulation to find the angle between the lines
- represcnted by the equations. The rule is as follows:
A m, and m, are the oradients of two straight lines,
\"\ and @ is the angle between the lines, then
L my—m,
ban 6=y +m,m,’ :
0 heing measured from the positive direction (§9) of the
seeond line to the positive direction of the first line.
Let OP he the positive direetion of the line of gradient
m, (Fig. 30) and let angle XOP=0;.
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Let OQ be the positive dircetion of the line of gradient
my, and let angle XOQ=4,.

Then  6=Q0P=X0P-X0Q=0,-0,
Therefore tan §=tan (6,—0,)= tan 0, —tan 6,

L+tan 0, tan 6, N
But tan § =m, and tan8,=m,, so that A
<\N3
an G=s 1= Mo o )\
ban 6= T+mm, i
N
Y O
INS)
D
R

—710 3% X
&N

The numerical vafue of (am, —m,){(1+mm,) is equal to

the tangent of th\{‘ae?u-te angle between the lines of gradients
my and m,. §

Cor. If@is'the angle between the lines whose equations
) / ’
are az+ e =0 and @+ by =0,

then "\x G tan § = b’ —a'h

N aa’ - bh”
\For, gradient of ax+by e =0 s —afb=m,, say;
Cpnd  gradient of ax-+byde=0 is — &' fb =my, say,

\/ Henee tan @ =%;_?E;’
: R

a . a
- 3 +3 _ub' —a’h
T W

!
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Ex. 1. Find the tangent of the angle between the lines y=22-3

=]

and y=x-+5. With the help of tables, find the angle. :
mg ity 2-1 !

14mymy; 1+ 2.1 &

Here ;=% and my=1; thercfore tan f=
From the tables, §=18" 26",

Tix. 2. Find the tangent of the angle between the lines 2w —y=3

and 3w+4y~=>5. Also find the acute angle between the lines. O
Put m, =gradient of 2z —y=3, so that »m=2; and m,=gradient of |
84+ 44 =5, so that mg= — . ¢\
P\
Thi g Mmome 2+ W (A
hen tan Tfmgmg 1—2.% 2 . |

The acute angle Iz voughly 79° 427 D
&/
Tx. 8. Prove that the twe lines y=2r+4 ahd’b =3z+4 are
inclined a6 the same angle as #—y+2=0and 3z — 41 =0,
Let §,—angle between lines y=2x+4 and y ?Qv,}{- 4,

I : ng oy 223,80
Then tan & Trmm 1ioee) 7
Let 8,=angle between lines # — g+ 9=9and 3zr—4y+1=0.
' . — N :‘ \ b 1
Then an = ma SN -E 1
¢ tan 6, 1+ﬁ31%'1+1.% 7
Henee tan 8, =tan &, numerically ; that is, the first pair of lines
is inclined at the same an g@ as the second pair.
Ex 4 If Plz, ) iﬁig}\p()int above the axis of x, and A and B are
the points (L, 0y and{s 1, O) respectively, prove that
. :s’ .’5‘2+y =2:e‘}+1;
if the angle M ?B s half a right angle.

1\ ' Let = gradient of PA =x_?—{ T
{ "\.‘ v
N/ : ki
\'\\ Let m,>=gradient of PB=_"~-

™

,~\”’oﬁ 8 is the angle measnred from the positive direction of PB to the

"‘\; wpositive direction of PA, then tan =1

Also : tan 8=£‘_;ﬂ$§g ;
y ¥
: 1=-——-——m_; ”H; ;
1+,-1:‘—1'm

this reduces to . S2ryr=2%+1
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Ex. 5. If Pz, %) is below the axis of x and 4 and B are the
points (1, ¢ and (-1, 0) respectively, prove thut
' 2yt 2y=1,
if the angle A28 is half a right angle.

Ex. 6. H 4, B, P have coordinates (1, O, (-1, 0) and {# )
respectively, and if the angle APD is & right angle, prove that
224t

Ex. 7. From the formmla tan 8=

N

My — 1, £
—5L "2 deduce the cm\i(ﬁ‘twn

. 1+ iy,
that two lines of gradients m, and ., should be parallel, apdMelso the
condition thut they should be perpendicular, N

<

Ex. 8. Find the tangents of the angles of the t-l‘ingIe whose sides
are the lines 20~3y—5=0, b»—y—38=0, and &y +5--0. Also
caleulate the angles of the triangle. ¢

Ex. 9. Find the equations of the lines @;lQoﬁgh {2, V) which are
inclined at 2n angle of 45° to the line 249, L2

Tx. 10. Find the equations of thé\iides of an isosceles triangle
whose vertex is the point (e, b), whoséJhse is the line lz+ My a0,
and each of whose base angles iz oo\ '

Fox. 11 Tf the angle measwyedifrom the positive direction of the
line 2+ 3y=" to the positigh direction of a line passing through
{3, 7) is 45%, find the equatichve! this line. '

CEx. 120 1f the anglc&fileasured from the positive direction of the
line y==max +-¢ to the Hositive direction of a line through (v, ) is «,
prove that the eql.t{b@h of this line iy '
N\ 7+ tan o
A i
By N\ \ 4

36. Bisectors of Augles between Two Lines. If any two
infersceting straight lines are drawn, then two angles are
formed, cach of which has a bisector. We know from

elementary georactry that any point on either bisector is
¢Netuidistant from the two lines,

U Let az+by+e=0...(1), Adw+By+0=0 ...(2)
be two intersecting straight lines: it is reguired to form
the equations of the bisectors of the angles between them.
If (@, 9;) is a point on eithor bisector, then
length of perpendicular from (@, ¥,) to line (1)
=length of perpendicular from (@, ;) to line (2).

1 (@—2).
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But length of perpendicular from (z;, ¥,) to ax+by+e=0
ee -+ by, 6
, NZEN I
And lengthof perpendicular from (w,, ¥,) to Az + By+0U=0

is, by §30,

b VAT B
Hence e by +e_ | Am+ By +0 O
JAL B

S

the double sign being necessary, since the left-Hahd and
right-hand expressions may be either positive orgegative.
For ,, 3y, write 2, ¥, and we obtain i
axfbydo_  Ax+By L0
Jarw | T JAILEEA T
as the equations of the two bisecto;*é‘:,: ¥
The reader should revise Exs. 18522 on p. 56.

Ex. 1. Find the equatior;s of vt}@(*f:lgi:s(-‘.ctors of the angles hetwecn
the lines 2x—y+2=0 and 2+IF7=0; and draw the four lines iv
the same diggram. L _ .
Length of perpendgm}ur from (=, ¥) to first line =%j—;+—z—;

£ \Q,t’ )
and length of pe[;pehi culay from {x, ) to second line=f%z-

Hence equatig:{é of bisectors arc

A\, r—y+2 | x+Zy+T
'\ e
AN\ B N
that isz,\\“" D —y4 2= +{x+ 2+ 7}
or o\ #-3y=5 and Jxty+o=0

N

,\:"’E.:i, 2. Wind the equations of the bisectors of the angles between

\ bhE lines 7a—3y+1=0 and 3¢-Ty+2=0; and draw the four lines
in the same diagran.

Ex. 3. Find the equations of the Dhiseetors of the angles formed by
the axes X7 OX and T'OF.

Tx. 4. Find the equations of the bisectors of the angles hetween
the lines Sv—4y+1=0 and bz+12y+ 4=0.

Ex. 5. Find the equations of the bisectors of the angles formed by
the lines 8&— 15y +320=0 and Sz+12y=20.

N ¢
oA

N
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Ex. 6. Find the intercepts made on the a-axis Ly the hiscetors of
the angles between the lines 152+ 8y+30=0 and 12u4 5y =25

Ex. 7. Tind the equations of the bisectors of the angles between
the lines 3r—y+2=0 and 2x4+4y=T.
Fx. 8. Prove that 2+ =1 is equally inclined to the lincs
dr~3y+2=0 and 3r—-4y+3=0,
and passes through their intersection. A
Ex. 9. Trove that 120 —2y+7=0 Is equally inclined to the, }ifng§~
be—Ty+4=0 and Tr+iy+3=0 by

37. Tntersection of Lines: Concurrency. If{iwo straight
lines be specified by equations in @, %, referied to rectangular
axes, then as far as the coordinates of thalr point of inter-
section are concerned, the two equatifhe may be regarded
as simultanecus equations. TFor example, if we solve the
simultanecus equations O

Qe—y="T; da¥By+1=0,
we find z=2, y=—3 This shows that (2, —3) is the
point of intersection of tli® lines speciticd by the equations
2p—y="T and dx+3P1=0.

“Again, if we havedhe three equations,

KN 223y =12, (1)

C B4 29 =5, veeeriiieee, SUUTTTOY (2)

P\ Tt 10U =1, cooreriiioirieneeeaiee (3)

and so(\:} (1) and (2) as simultaneous equations, we find
r=35f=—2. If we now substitute ==3, y=—2 in

T4 10y, the left of (8), we find 7e+410y =1, so thut the

_.liFee equations are simultaneous equations for £ =3,y = - 2.

A\ JThis means that the three straight lines represented by

equations (1), (2), and (3) are concnrrent at the point (3, —2)-
More generally, the intersceting straight lines specified
by the equations
ac+by+e=0and e+ 0y+¢=0

meet at the point (26 e cw—o w)‘
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Further, the three straight lines speeified by the equations
by +e=0,
g+ by +oy=10,
_ age+bgy+ey=0,
are concurrent if N\
0, (Byty — byep) 4 by (0905 — G502} 6 (b —aghy) =0 O\
Tx. 1. Pind the point of intersection of the lines « N/
2ry=3; 2w-3y=IL N
Tx, 2. Trove that the following equations represen(tjﬂee con-
cuyrent straight lines, and find their point of intersectigy
Su4dy+2=0; &-3y+5=0; 24Tyt
Tx. 3. Draw the straight lines y=wmz+2, ,W\h\eﬁ m=1, m=-—2
m=2 Tind their commeon point. MV

Ex. 4. Draw the lines y — 3=m{x—2), \yh}:n’:mzl, m=—1,m=—2
Prove that these three lincs are concurrént, and find their common
point. X

Ex. 5. Draw the two lines repgefséﬁté& by
(27 +y — Tyed8a - 4 —5)=0,
when £=2 and k= —3. Fis@their point of intersection.
"Ex. 8. Draw the thr4e' ﬁhes specifed by
2¥o8y — 12+ k(i + 10y —1) =0,
when k=1, k= -2, %=3 Trove that they are copeurrent, and find
their point ofirifersection.
Bx. 7. Provt that the bwo straight lines
O (Z.J.r—y—'l)+;._u(.r—-y+1)#()
and, :\... (Ze—y—V)+rqle—-y+ 1=0
inﬁifi’secb at the point (2, 3)
~ "\Ex 8. TProve that the two straight lines
/ (a+y-1)+plda+3y - 6)=0
and ' (x+y—])+g(4¢'+3y—6)=0
intersect where z+y—1=0and 4z+3y - 6=1 intersect.
Bx. 9. Prove that the straight lines obtained from the equation
: (.v—g;—w-i—ﬁ)-}—k(.r—}-y—-a—b)=0,
by giving k various values, will pass throngh the same point, and find
the coordinates of the peint. :

G.ACh . ; 2
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Put ke, then £=¢. We oleain

. (r—p—at+d)tplady -~ D=0 (1)
and : L N (3 OY /) B T L S P TSny ) Poy § R {(2)
To solve these equations, first subtract :
dhen pletp—ae—D—glety—a—1N =0,
that is, (p—g¥ety—c-Db)=0 A
or atp—a—b=0 ... )
Now substitute From (3) in (1), and obtain K4 »
' x-—y——a+b=0..m..‘,.....,..“.,._..:.'.\...T:.(‘i)
We have now to solve (3) and (4). L
Add: then 2% -%0=0 or r=gq, N
Subtract : then 2y - 2h=0or y=10. 45

(4
Ience, whatever value 4 has in the given equﬁ,‘b}brl, all the lines
represented by the equation pass throngh the shag¥point (e, 6.
Ex. 10. Prove that all the lines represen by the equativn
{e—gte-0y+E{ety :sf{%~b)=0,
by giving £ various values, pass throuth) s fixed point, and find its

 coordinates,

Ex. 11, 3f the two straight ling®es + by +e=0 and av+dy+e=0 "
meet ab the point (p, g), show, that (p, ¢) lies on all the Hues
reprasonted by o4 by o bar+ by +¢)=0,
where [ is a varying conséant.

Ex. 12. Find whepeghe lines 2r+y - 3=0 and » -~ 3y +2=0 meef
Prove that all the lineg'represented by

2ty —8)+i{z -3y +2)=0,
whers b is & varying constant, pass through the point.

Ex. 13. ZPRove that, if £ is a varying constant, the system of lines
Bz — 2y A4yt k(2x 44y —5)=0 passes through the intersection of
S —2pH4=0 and 2x+4y-H=0.

%\‘14 Interprot geometrically the equation
\ (B — 3 — B+ £+ 3y +2)=0,

o
.»\"where £ iz a varying constant.
- \¥4

QO

38. System of Concurremt Limes. If two intersecting
straight lines arc specified by the equations '

ur+by+c=0 and wx+ b’ry+g’=-{);

then all straight lines through their point of intersection
are specified by the equation :

ax+by +e+k(ax+by-¢)=0,
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where k is a varying constant (paramacter). The parameter
J: is constant for any one lince of the system, but varies as

the line varies.

Proof. Lot the straight lines
w4 by +e=90 and ax+ly+e=0

meeb at bhe point (p, ¢), so that
ap+by+e=0 and ap+lg4c=0

LQf comrse, p stands for -

Le —ba e = 6N,

e abiafb‘)

Then, whatever constant value k has, .m:\g'
wp-+bg +ol(@p+UgHe) =Y '

Therafore, whatever constant value & h\ﬁs, the line
ap by e+ h(a’z4 BB =0

aszes through the point
Intersection of the lines

<N
R

(p, ,g)‘,w’that is, through the

ax+by+e=0 ’Vﬂ.?;:id' any byt =0

Again, leb the three gquat

1004

¢ i:gx\lw+b1y 0, =0, e (1Y
g by @ =0, e (2)
* @by =0 e (3)

be such };l@fq} ’

E(%-L‘{I’\i’;’ o)+ mlagz+bsyt ey 4 auluym+ by + ey=0...(4;

f:;xi;f il values of = and y, where I, m, 0 are constants other

,ghan zero; then the three

straight lines (supposed not

’ Tet the lines (1) and (2) moet at the point {p, ¢), s0 that p

by — g
stands for 221 and g for

yhy— sy

G4y Ot
RO

Then @ p+bg+e="0 and  w,p+bg+e,=0.

But, by (4),"
E(“1P+blq+ﬂ1)+m(%? +

byg+ co) {0ty + b+ 2y) =0
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Therefore {ayp+byg + ) =0,
that is, P +byg+e,=0, sinee n == 0.

Hence the line ae+by+¢,=0 passes through the point
(2, ¢), that is, through the intersection of lines (1) and (2.
Hence the lines (1), (2), (3} are concurrent. T

Ex. 1. Find the equation of the line Joining the origin Lo the poing
of intersection of Ar—-y+2=0 and 2zt #+3=0 Y
The equation 3z =5+ 2+ k(25 +y+3)=0, for varying valua{s’}':f" the
constant & represents all straight lines through the intergedtion of
Sr—y+2=0 and Zety+8=0. lt remains to find the “particular
value of £ which gives the line through the origin. '1’;11!; w50y =0

in the equation containing £ ; then ~A
9+ 3k=0; \/
k= — % \ \
Henco A=y +2 -3 (8r +y+ 3140,
that is, fr—dy=0 or ;r::-g}:‘tl
is the line required, AV

Ex. 2. Find the equation of the traight line joining (3, —2) and
the point of intersection of 3z+ Byeg =0 and 253y 4+ 1=0.
Let the equation be QY
: &n—l—-’jy-—3’:’—3:'«%(2:0-33;’-1-1):0..‘,.'. ................... (1}
The point (3, — 2) lies owrthe line,
Therefore 3. B+ T+E{2.3-3(-2)11} =0,

that is, cd\J —si13k=0

or ' \\ k=4
Going back to{Th we see that the requoired equation g
AN Bt by - T4 (20~ 3y 4+ 1) =0,

or A\ 50+ 41y — 830,
Ex, 3-Find the equation of the line Joining the origin to the point
of mtbr\%sec’tion of 62~ Ty4+2=0 and 2z +8y=11,
Exd Find the equations of bhe lines joining the following points
tothe intersections of the followin g lines
M\Z J (i) Point: (1, —1); lines: F—y+1=0; Br—gy=1;
\ } (iiy Point: (0,0);  lines: Saa y=T; Qx-5y=8;

(i) Point: (3, 2);  lines: S~Hy=12; e+y+8=0.
Ex. 5. Find the cquation of {he parallel to 22—3y41=0 through
the intersection of Zt+y+1=0and 2r—yL5=0,
Let the line Le AU EQr g1 5)=0. ol (D

Theu gradient of the Iinezig'_gl_’%,
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Tt geadient of 2e—3y+1=0is 3.

142k
Hence 7 1.____§,
that is, Fe= =4

Cloing back to equation (1), we obtain
' zty+1-§(2x—y+5r=0,

that 1, Gu— 0y +21=0
or 2w —3y+7=0 A o

Ex. 6. Find the eguation of the line drawn through the intef- )
section of the lines 3x+4z =7 and 4z — 5y +11=0, (i} to pass thrdugh
the point {—2, —8); (i) parallel o 3z—2y=1; (i) perpendicular to
3&‘—2‘fj= 1. . ".\ b

Ex. 7. Straight lines are drawn through the vertices of {the triangle
formod by the lines 2r—y+1=0, 32+2y=4 & —y=%{{¥) parallel to
the opposite sides ; (i} perpendicular to the opposite gides.  Find the
equations of the two systems of lines. ) \\J

7
W

EXERCISES XIL\/

1. Find the intercepts made on thegxes'by the line 22— 3y=4.

2. Find the intercepts made onythe axes by the line joining the
ponts (s, 7 and (2, 720 (o

3. Find the inbercepts made oh the axes by the line whose freedom
equations are s=a+bt, =6l

4. Tind the coordinsfes of the point of intersection of the two
lines @-=a 4B, yzc-l&@\&’r’nd pe=g b, y=¢+du _

5. Find tan o afd p if the line aw+by+c=0 be expressed in Lhe
form zcose -ty s\‘in:a.'=p.

6. Prove ‘sh;asL ‘the line £ —by+6=0 passes lhrough the point of
interﬁectiqu'o\fs the Jincs 3o— 2y +2=0 aud 22+3y—4=0, and Liscets
the angled 'Q}ﬁiveen them.

7. {Prive that the equation (z—z )y —yey=(r— 2 )y — i) repre-
sontsghe straight line joining (24, 70 a]n& (.:4‘2,2312). ’ ) xep

. 1}8: Prove that the equation :
} C(rw+b;y+c)=c(dx+ﬁy+0)
represents the lins joining the origin to the point of intersection of
g+ by +e=0 and dz+By+C=0.

9. Represent graphically the lines of the system

o y—-2r+ by -3+ &=0,
for k=1, -2, 3, -4 Show that all the lines pass through a common
point.
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10. Find the conditions that the two systems of e uakion
r=atbl, yeetdt and w=a'40, y=o 4 dn
should represent (1) parallel lines (1) perpendiculur lines ; (5i) one
and the same straight line.
11, Find the condition that the lines r=w+bt, v =oddt and
dze4 By + =0 should be (i) parallel ; (il) pevpendicular,

12, Find the point of intersection of the lntersecting lines N
w=a+bl, y=c+dt and Aws By40'=0. N .
13, One Hno of the system R\,
2u—y+A+k(z+dy+5)=0 O

meets the z-axis ab A and the yaxis at B If 04 = — 2, find 65,

14. Use a book of Tables to find the angle formed 2y the lines
de—2+3=0 and 2w-4y+7=0. What are the ghuations of the
biseetors of the angles so formed ¢ \

15. If b is positive, prove that azr, +by e igpnsitivc or pegutive,
according as (&, #) is above or below the ling/'mar iy + e=13,

16. Ts the origin aliove or helow the lil{e'?f,\-F’ﬂy=3 ¢

17. Prove that the origin and the POIE( -1, —2) are on opposite

. sides of the line 243 Sy+5=0. ¥ird- the point wheve the join of
0,0 v (-1, ~2) meets 27+ By 4 Bl

18. If & iz positive, prove thag i point (e — b, e+ b) lies above the
line ar4-by+1=0. ™

N 3

19. Prove that the origjr lies below the line abn+ b2 =¥,

20, Prove that the prg\gcin lies within that angle, formed Ly the
lines 22—y 4-83=0a (K’szey +==0, in which lies the bisector 24y--2

21. Prove thatjthe three straight lines

rty=2,
N -t cmayyt(a-by—o,
I’ cr,(b-c)x+b(c-f.{.);y—f-c(a-fa):[}

are concuryent, )
22, Verity that

™ 2(2x—y+1)—3(x+y—1)-(.r—53/+5)=0
. forall values of z aud v ; and deduce & property of tho three lines
\\} 2r—y+1=0, ad4y=1, o+ h=5y.

23. Find the equation of the line joining the intersection of
37 =By +4=0 and %47y ~2=0 to tho intersection of %y +7—-1=0
and 8x4-2y=0.

24, The equations y=a2 45, y=ox +-d ropresent two lines. Expi'ess
¢ in terms of «, (i) when the lines are parallel ; (ii} when the lines are
perpendicular ; (iii} when the lines form an an gle of 45°,
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95. Tind the equation of the straight line O/ which passes through
the origin and also through 2. the point of intersaction of dr-2y=3
and 3y —3r—=4. Write down the equation of the straight line through
the origin at right angles to OF; and find the eoordinates of the
points in which it intersects the given lines,

98. Prove thal the lines of the system y=(1—&)a+(1 +4£) all pass
through « fixed point, and find the coordinates of the poink.

97. I, in an isosceles triangle 4 B¢, the angle ab A is a right angled
and if (2, 7), {6, 1) ave the coordinates of 4.and 7, tind the coordinates?,
of each possible position of €. QO

98, The coordinates of A, B, P are {a, 0}, (b, 0}, {x, ). Progg’ that
the tangent of the angle 4 PH is AN . 4

w9
T 4

29, Tind the condilion that the three Jines < %
. ard-by+e=0, of C\
Chetey e =0\
c.?:+r_¢y+b=(5‘:“
meel 1o a point. o\ o

30. Perpendiculars are drawn frpidthe origin to the straight lines
whose equations are x+32y=3 afie Bu+3y="5; find the equation of
the straight line whieh joins theifeet of the perpendiculars,

31. Find the tangent oﬂ{;he angle betwoen the lines joining {z, )
to (a, B, (o, 43 :...>

32. Find what v4 Lfs{}’)'must have in order that the straight lines
prtdy =0, 5+ =0y 2o+ 3y =4 may meet ina point.

33, A, B arertbepoints (9, 0), (0, 12). Tind the coordinates of the
point of interagetion of the mediang of the triangle 048, where Ois
the origingpg

OYY

,\\u

N
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CHAPTER VI. K¢

N
PAIRS OF STRAIGHT LINTS. HARMONIOVRANGES
L W
AND PENCILS. CHANGE OF ORIGINCAND AXES.

39. The Equation uv=0. Certain egwgtions in @ and ¥
of higher degree than the first cangle” graphically repre-
sented by means of two or more spéaight lines.

>

For example, consider the equatiom .

1228 — 2y — 104*62+ 1Ty = 6=0. ...ooeeeiiirrnnn ()
Put x= -2 1in (i) ; N
then _ 18+ 4y 102+ 12 + 17y — =0,
which reduees to AT0y? - 21y — 54 =0,
that is, N8y +3)(5y — 18)=0,
80 that $ '\"’ y=—15 or 36,

Hence 7= — 2% ="~15 and »= —2, y=36 ure points on the graph
of (i) To obtsiw’an idea of the graph of (i), construce a talle as
follows, nobidg/ that to each value assigned to # in (i) there
correspond 5o values of

A — .

N e | -2 -1) 0 b ‘ g
N — = [~ = ; — —-
g | =18 05| 05 | 15 ‘ 25
\\ " ¥ Tors6|ored|or 12| .0r0 jor—12
) :

giving 4,4’ BB €, ¢ DI E & of Fig 3l
Since the points 4, B, €, £, £ e on one straight line and the
puines A, B, C°, I, E lie on & second straight line, 1t is possible that
all the point-pairs belonging to equation (1) also belong to one or
other of these lines, Tt is easy to show that (his is true.

For : 1202 - 2y — 1092 — G 4 1797 — G -
can Le factorized and expresssed us a product thus ;
(2w 2y + 1B+ 5y — 6).
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If then (z, %) is any point on the graph of {1y, it follows that
(2 — 2+ 1)(B2 -+ 5y —6)=0.

Hence -2+ 1=0, ISP UUTT TR UUURUORTURPIRRRRRR { 1
or 6z 4-by —6=0, [ RTPTEUUTPTUUPUNN 6+
or both 2w —2y+1=0 and G40y —B=0. covrenrarrnn(iV)

T
II "}r T 1 NN [ _E .‘
f_ . \\i [ 11 .\ )
e MET e,

.‘_,_i____Q RN .
Eas ExiSAEmmadmsany H -

L HHE man
u N
an EuSn=as §EEC\ZE 2 5
HHT R TN PR o
e G RN T FrH
H T NSO max
Ei i G

1 A T M

B : Esassessant
EaE HRETH
] HEH
F H H
i R R PP

\..' - Frz. 31
Tf {{lt’iﬁ true, (2, ) must lie on the straight line 4 £ of Fig. 31; if
(itiyis true, (7, ¥) wust lie on the straight line A"&'; if (iv) is true,
() must be the peint of intersection of A€ and A'%. Hence the
~gpaph of equation (S iz completely represented by two straight lines.
N X N ;
More generally, if »=0 and #=0 are linear equations
in x and y, then the equation
: wp =0
represents the two straight lines « =0 and v=0.
If #=0, v=0, w=0 are linear equations in @ and .
t-hi_‘.'[l t;]'l(*. equa’ﬂion UL = 0

represents the three straight lines #= 0, v=0,w=0
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Fx. 1. Find an equation which veprescnts the lines
E=2y+1=03) and Zo+3y41-=0 (0
Multiplying »— 2y +1 by 2o+ 34+ 1, we obtain
20Fm = G+ Bty - 1,
The equation 2a?— gy~ 6248+ y+ 1=0 reprosents the two Dnes
(i) and (i), . X
Ex. 2. Factoriso 2v%—ay — 2+ 454 Sy 6; and find the two sbeafht
lines represented by A\
_ 20® — ey — P dr Dy —G=0 o el fa)
First Step : Factorise 2o~y -yt s we get (2o (0 — !:{53"":
Second Step : Form the product {20+ +w) (e - v+ "3& Y
Thaird Step : M ultiply out : N4
2 -y — i {mt b+ — m Vo A,
Fourth Step: Comparing the cocfficients of " and 2hand alwo the
absolute term in this sxpression with qlll'?sef in the piven ox Pression,
pue A=A (@, —mie=p({d) mu=—6 (i)

Fifth Step 1 Bolve (i) and {it) as.e{ﬁimlt-aneous eqnations in w and w,
getting m=—2, n=35, and verIfnghut (ii1) is then satisfied.®

W find 2ty 3ty 4.::3-;—‘:':-3,;;6=(2..r+y—2)(,x—y+ 3.
The two straight lines{‘reprcsentcd by (a) are 2r+y-2=0 and
#—y+3=10 O
Ex, 3. Fact-orisp }n‘x\‘\[— 13y +by% — 16x - 22y 4 8.
Ex, 4, ]i‘a,ﬂt‘:\m{ﬁ’e"??.m'z — 8%y — 88y — 5%+ 107y — 9,
CEx, 5 Show that the following equations represent two straight
lines, andfind their equations ;
@ @+y— 1)~y +1)=0; (i) 22— 42— y=0;
.f’iﬁ) 2~ my — 3t - Br 41 =0, (iv) Gvg-{-éxy—63/2—-3.-1‘—1-28_;/—:30:0;
L () 154 194y ~ 1002+ 75+ 92y — 4 =0
N/ (1) 8447~ 662y — 5442 4 614 93y — 4020 ;
{vii) B — 10y + 3i=0 {viil) abxz—(u2+bﬂ)xy+a.by' =0;
1) b —)a*+ble— @)my+e(a~B)y2=0; (x) i+ 2hary + by =0,
*1F the last term in the given expression viz., -6, be replaced by any

other numher, then (i) would not be satf sficd for m=—2, =8, This
shows that it s exeeplional for such expreszions to have factors.
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40. Condition that ax®-+2hxy +by+2zx4-2fy +¢=0 should
represent two Straight Dines. The necessary and sufficient
condition that the equation

a:x:?-{-2hmy+by‘=’+29:t:+2_ﬁe;+c=0 ............ (1)
should represent fwo straight lines is that ¢
abe+2fgh —af?—bg® —ch®=0. .......coiees (2]

- AN

Proof. (i) Tf a==0, instead of equation (1) we may-ger-
sider the equation \ o
a4 Jahey +aby? 4+ 2ega+ Qafy 4 a0 =0‘; (3)
for (3) may be derived from (1) by multiplyig both rides
of (1) by «, and (1) from (3) by dividing \guph sides of (3)
by a, sinee a==0. NY;
From (3), we have ";\

%
an

aZa2 4 2ahaey + 2og:0 = —'a?f;'g'r? - et fir —te.
Add /iy 42ghy +9°F to both ‘sides in order that the left
side may be the square of agghy +g; then
R 4 B P o 2achay -+ Bagi + 267y
_ OO (?1,2—cs:b)yg—%?(g}’f,——f{f)y—}—(gzﬂac),
that is, : )
(we-+hy P = K= by +2(gh— o)y + (7~ ac)}=0. (4)
Now (& 2 L by + 2(gh — af yy +{2 — ac) is a perfect
square aghrégards y (that is, 18 the square of an expression
of the first’ degree m )
it NO” a{gh —af = 4(h2 — ab) (g — o),
sshich reduces to
o atbe 4 2afgh — af?— abg — ach?=0

a\Y4
\/ o, since a==0, to
: ) abe+ 2fgh —af*— byt —ch?=0.

This is the condition that the left-hand expression of (4)
can be factorised. FHenee it is the condition that equation
(1) should represent two straight lines, Since the steps of
the argument are roversible, the condition is both necessary
and sufficient.
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(1) It a=0 and b=, by interchanging « and h, and
- @and y, we see that the same condition holds,.
(iii) If =0 and b=0, but k=)0, then (1) becomes
2hay + 2z £ 2fy4-c=0

or a:;z;+;%’—:c+7{y+§%=0,
since f 5= 0. AN

Sinee the left-hand must, factorise, there must be numbers,
P and ¢ say, such that N

<

N\

N &
e\

my+ga«,+£y+2%=(w +)(y )"

- =7y + 2Py +pg,
that is, such that N

P X7,
ot A\
BTE TP gore
: o AN
Henee o 0T
or 2f i ch? =0,

But this is what (2)becomes when =0 and b=0.

Hence condition (20still holds,

(iv) If a=90, k&fo;”h=0, equation (1) becomes linear in
@ and vy, and therefore drops out of the discussion.

41. The Bqhation X’ + 2hxy + by2 =0, Equation (1) of the
Precedingsiction, when 9=0, f=0, =0, takes the form :
e
%w’ a4+ 2hay +by2=0,
which is of special interest, This equation always represents
AWo straight lines through the origin; if A2~ uh g positive
“\the lines ean be graphed and are veal, if /2 — gj ig negative
N\ the lines eannot e graphed and are imaginary, if h2—ab
18 zero the two lines consist, of the same line twice over.
For example, the equation
: 37+ Ty — 6yt=0
ean be written in the form
' @z~ 2)(w+3y) =0,
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and therefore ropresents the two lines
dr-2y=0 and x+dp=0,
that ig, the lines through the origin of gradients § and -4
The equation P AYFGE=0 reicrnnneerranssensene {2)
can be writton in the form

(o) o 5 %)

where s=~/— 1T, and thereforo represents the two lines

x-l-lim‘;‘j .0 and —i———-w{_y 0; "z\",
) 3

these ave two imaginary lines through the origin.
The equation 4120y + 997 =0 conn S0 NIRRT {3}
san be written in the ferm \
O
(224 320+ B3y) =0, 7¢
and therefore represents the line : \

P w4

2x+3y=0, tw]ée,.

If the equation  aa®+ 2?&¢y+ Eyg =0

vepresents the two lines through the origin of gradients
m, and m,, then the lineSare
?,:—n,l\@;:O and y—mge=0.
These are both ﬁpresented by
< ) {1y — M)y — M, qr1 =10,
that - 1@. '\w y——(m1+m.,)fm;+m1mzm 0 ............. LD
Bu ax® 4 2hay + by =

caaﬂse wrltten in the form-

NS

"\”
\J @;2-1——%5 a‘y—l—b gm0 i L.(1T)

/
3
4

"Hence (T) and (IT) must be the same equation. Therefore

qn]_+m_.g=_ngi R L p—ci )

These rolations are imporiant, 83 the following exercises
will show. ' .
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Tx. 1. Find the condition that the two lines reprusented by the
equation ar®+3kxy+ by =0 may be perpendicuiar to one wnother.
Lot the gradients of the lines he 2, and .

Then either Py = —j— or A= -
'i':r::a dhty
that s, g+ 1 =0,
Henge, from (ILI), g +1=0 \
or 4 =0, .\:\’_ '

Since the steps are reversible, the condition is sullicient ns (el as
Necessary. \

‘. .
Fx. 2. Find the condition that the gradient of {_111;».§}f the tines
represented by «i?+2hzy+ 572 =0 should e double Liakof tho other.
- Let the gradients be i, and . ‘)

Then either i =2my  or ang=Zm,
that is, my—2my=0 or  my— Ll
Therafore (my — Qon, My — le}'iﬁt;'
or Gy, — 2(my + )2 0,
or- - Bra my — 2(my + M= 0,

Da SIS
or, by (1IT), % - .vg%z 0,
or w8k =9ab.

- N ey . s
Bince the steps are revesible, the condition is sufficient as well as
DGCessary. -

o\
Ex. 3. Prove that ghe’ condition that the sradient of une of the
lines represented bw-l- 2hxy +byi=0 should be the square of the -

gradient of the ather 1s that ab(u+5)=6abk — 8% Is the condition
sufficient ? o s

N : .
Ex. 4. TFiadthe necessary and sufficient condition thal. of the lines
represon@pff\ljy e+ 2hay +- byt =0, twice the gradient of one with
thrice £H6 gradient of the othér should equal 5,

E.s}\'b: Find the necessary and sufficient condition that one of the
]ig}es‘,(wg—}— 2hay+ by =0 should coincide with one of the lines
O @@+ 2y 4 By =0.
\ ) Ex 6. Prove that the equation
6%+ by — dy¢=0
represents the parallels througl the origin to the lincs
. 602+ By — 492 — Tt Sy —B=0,
Ex. 7. Find the equations of the parallels through the origin to
the lines 6&'94-5»1:_?/—69/2'—7.9—43(-]-2:0.
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Ex & Prove that the pair of lines
) ba? - Shay Fayi=0 .
are the perpendienlars through the origin to ihe pair of lines
a4 2hay + by =0. :

Ex. 9. Tind the cquations of (i) the parallels, (ii) the perpendiculars
through the origin to the lines represented by _
42 Dhay + byt + g+ oy +o=0.

N

O\
42 Angle between the Lines ax®4 2hxy+by*=0. Le§~~§hé"~
two lines represented by : g™
e+ 2hay -+ by="0 ~" 3
be y=mm® .. (1) and =T « »"\(‘2),
2h : N
A (3) and mﬁlm veeee(4),

by equation (I1I1) of §41. oS .
Let © be the angle belween lines (J?)‘_énd (2); then, by §35,
SR s
gy )
But (i, — )= (" SRR, )P — ey,
N g0 4(hE-ab)

fan B

, from {3) and {4).

OoFTTT T
. P 2 hE—ab
Therefore, ()  my—my=t—5
¢ _
a a+b

Al{?:\ié}bm (4), L+m,my= 1+ =
\ m‘-l_m,z 2-\']&2-‘(532

“}h s . —= = ——
NN enee, 1 ey + a+b
~\D —
\/ and therefore, by (5), tan 8=2~—h——a@,
- a+b
" if the ambiguity in sign be dropped.
Conr., The lines are perpendicular ifatb=0

Tx. 1. Yind the tangent of the acute angle between the lines
%ivan by the equation Spt - 10my + 250 =1 Find the angle from a
hook of Tables,
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Ex. 2. Prove that the angle between the pair of lines
: B2 — Ty 4+ 420
is equal to the angle between the pair 627 — fay + 42=0.
Ex. 3. Prove that the angle between the pair of lines specified by

tho equation 2#?—bHzy -3¢ +a+11y-6=0 is equal to the angle
hetween the pair specified by 222 - 5y ~ 34 =0,

Bx. 4. If av®+2hny+E0+ 290+ 2fy+¢=0 represents a paiv dg\

siraight lines inclined at an angle #, prove that o
tan 9—2i&3__“b '\ N
T oatb D%

Ex, 6. If 62— 115y - 104° - 19y +2=0 represents two &vaight lines,
find the equations of the lines and the tangent of th/aigle between
them. ,\ Nt

43. The Bisectors of the Angles betweeg the Lines

ax?+ Shxy + by?fo.\
 Let the lines represented by the'equation
ax® - 2hay byt =0

be Y=mz=0_ j:i‘zid Yy — myr=0,
so that m, +m,= — 2% & and mym, =afb, by (IIT) of § 41.
Let m,=tan, and m,=tan0,.

Then if tan @ isthe gradient of a bisector, we may write
py \ tan 20 =tan (0, +6,);
;" 2tan®  tan O, +tan g
heref AW = L 2
there 70 T—tand ™ T—tan'd, tan 4,

\} _ tm, -~ 2jb 2L
& T1—mm, 1—u/b a—b
_~\Hence (a—b) tan O =4A(1 —tan’p)
\\ “or htan204(g—B)tan O—h=0. .......ovvvv.en (1)
TIf the equations of the bisectors are
Y—n2=0 and yYy—ne=0,............... (2)
7, and n, are the roots of (1), so that '
a—b

nl +fn,2: —_ h_ and ﬂlﬂzz -1 .....u--(:%_)



§§ 43, 44] BISECTORS OF ANGLYS BETWEEN LINEPAIR, 87

But, from (2), the equation of the bisectors s
_ {y —m)(y —nx)=0
or 42—y + Ny + oy ngat=0.
Hence, from (3), the equation of the bisectors becomes

a—b
y2+—?my—x2=0, K4
. N
or ha? — (0 —b)ey —hy* =0, i
42 g KON
o W=y _ vy N
: f,—b h . ...\"
Ex. L. If (& #) is a point on a bisector of the angles between
y—ige=0 and y —myr=0, show that .\\,,
(y — )t ('y—mm)*\*
14w 1+am\J
and deduce the equatlnn of the bmectma*of the angles. between the
line-pair a+? + 2hzy + by =0. ax’* :

Ex 9. If m is the gradient of auBigector of the angles formed by
the lines g —#z=0 0 and 3 #—myg=0, show that

N, g — it
[‘%—mml l-i—mmj
and deduce the equ Nn of the Disectors of the angles between the
line-pair az‘*—l—%ay-}-

44, Harmome Ra:nges It A, B, C, D are four points on
an axis :aai}sh'thdt AC AD

\.,/' @:_D?, ........................

thﬁda\ls, such that AB is divided internally and externally

" \‘hs ‘the same ratio at ¢ and D (Fig. 32), then 4B is said to
3 1 1 |
w A c B D

T 32

be divided harmonically at € and D. Equation (1) may
glso be written in the form

(/ _(1 C‘I B

ADT TBD
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go that CD is at the same time divided harmonically by
Aand B, 4, B, €, D formm a harmonic range; A4 and B
form one pair of conjugate points of the range, ¢ and D

form another pair. We also say that (4 BCD) is a harmonic
range,

It 4, B, €, D lie on an @-axis, origin 0, and if theird M

abscissae are x,, &,, #,, @, respectively, then

AC=00—04 =2,—2,; sz-z:xz_q«J; ,{‘“'\
AD=x—2,; DE= =y Ty e
Henece G % 0
Ty — &, By — ity O
which may be written in the form " .
(e F ) (wy+ ) = 20 2 -1-\r3:r4) e (2)

Since these steps are rever, gible relabmm (1) and (2) are
equivalent.

The relation (2) has three unportant forms asg follows.

L If (ABCD) is a halmomc range, and 0 is the middle
PDlnt of AB then 043__ o, OD

and conversely. A
Take O to be tghl} origin of the axis on which lle the

points 4, B, €, B\ "Then we may put @, = —x, or; +a,=0
in (2), when 8,0 obtain, alter division by 2,

\<& 0= —w +tmyz,
or K '\ ol a? =y,
Bt\~ w?=04% 2,=00, z,=0D.
chce : 04:=0C. 0D,

S) \Since the steps are reversible, the converse holds.

w

IL. If (4BCD) is a harmonic range, then
g 1 |
ABT A0 AD

_ and conv ersely.

Take 4 to be the origin of the axis un whlch lie the
points. Then we may put @, =0 in equation (2), When we

obiain . (“r,g ta)= 23‘3%
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ax?4-2bz+e=0 and

a'w+ Wx e :-I}
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Divide both sides by 2%,
then 1.1 = 2
' £, Xy By
Siee m=A8, =AC, «,=AD.
’i‘l1crefore 2 + —L
. ABTACTAD .
A
Sinee the steps are reversible, the converse holds. ,.'\’\‘">
IIL. If the roots of the equations S
e

are the abscissae of A and B, and C and D, \w"h%re (ABCD)

is a harmonic range,

then a +a'e=2bb, ,:\-\J
and conversely. N\
F 2h AW ¢
or ﬂ?l—rﬂ?gz = J: (Y mzxg.;:_!
R
Q"“
' Iy fa ] . C(
{1;3 + .,1'34 —'_-? :lz"'a'\—,, 93327)4 = E{.-Fl

Substitute in (2);

=2(;+5)

then ’@b
\* 7t
or :\ e+ o'e=2Db,

Since the\a,teps are reversible, the converse holds.

}f {ABCD) is & harmonic range and O bisects CD, prove
th.t‘o\é(?« BD=E4. B¢, and conversely.

N ’f*}x 3, 1f (ABOD) is a harmonic range, 0 and O the middle p
'.\ef *A B and €D, prove that

w\Q,

(i) ACG.40=4D. oc's
(iii) AB.CD+24D.BC=0

of the range, prove that

(i) 4B+ CDE=400%;

ointa

(iv) €4 CB+DA.DB=CD%
Ex, 2. If (ABCD)is a harmonic range and P any point on the

(iy P4.BC+FPB. AD-{-PC DB+ PD.CA=0;

PB_PC _PD
W 2Tt AD

line
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45. Fundamental Theorem. The following theorem is of
fundamental importance,

Let (ABOUD) be a harmonic range, and Lo lines be drawn
from amy point O outside the line of the range to pass
through A, B, O, D (Fig. 33), If any line A'BCL be
drawn to cut 04, OB, OC, 0D in 4', B, (", I/ respectivebyf S
then (A'BC'D) is also o harmonie reLinge. A
e

\ Fia, 33,

Through ié?and (' draw XCY and X'C'Y parallel to OD
to meetp 04 and OB in X and Y, and X" and ¥V

resp§ti}fely.
Tben A0 _ 4D
R\ OB~ " DA
'"\: wsince (ABCD) is a harmonic range:
" therefore 4¢__on 1)
AD 17 TR T TT T PrTe e
But AC_X¢
' ADT 0D

since triangles ACX, A PO are simiiar,
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and | DB 0D

since triangles CBY, DBO are similar.
Substituting these values in (1), we obtain

xo_ ¥,
0D~ " 0D AL
therefore XC=—YC. A
Hence €' is the middle point of X ¥. ..-..-.-....-:.‘::t"-':::(z)
But O{X’ % and }I:g, gg,, from éin;iléféﬁ&ngles.
Therefore X _ Y0, \
Xy N
hence = V'¢, since CX = m %y (2).

We may now reversc the steps “from (2) to (1), using
dashed letters, whence we obtam Y

A7 (*’_;_‘ *A’D’
RS T DR’
or (A’BC'IY)yis a harn{bmc range.

46, Harmonic Péncils. If four straight lines OA OB
OC, 0D are drawn from a point O to four points 4, B, €, D,
which are sl that {ABCD) is a harmonic range, the
four lines, é@aMed rays, form a hurmonic pencil: and il any
tine, cal ff'l\a, transversel, be drawn to meet the rays, the
four Q@t ts of interseetion with the rays form a harmonic
range, by the theorem of §45. O(ABLD) is called a
hafmonic pencil; 04 and OB form one pair of conjugate
w\»}&ys OC and 0D the other pair. Certain forms of the
\ equations of the rays of a harmonic pencil are important ;
these we proceed to investigate.

L The lines y= 7w are harmonically conjugate with
respect to the lines =0 and y =0 for any value of & '
Consider the four lines

y=ke (1), y=-—ke (i), o=0 {i), y=0 Gv)
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On (i) take a point 4(z;, %,); through A draw a line to

N\

meet (1it) in € and (iv) in D. Mark on the line the point
By, ¥,), the harmonic conjugate of 4 with respect to
Cand D. _
Then ég: —é{)=??E say
0B DB ™ w ’
so that (' is the point O
)
(WE"-MI Y, +'nyl) o\
m+n ' m4n s
and I} is the point A
(mg—ml’ ﬁyg—n&)_ ' m:\"
M1 m—rn \/
- It remains to show that B lies on (i1), N\
ies on (i), therefore ™2t lg" L m_ 2,
€ lies on (jii), therefore m-{-f{pffﬁ) or =k V)
 Dlies on (iv), therefore "2 _g o "_Y (vi)
a=n W Y,

Hepca, from (v} and (\{iw);':'“v
L GNG op Yy Yo
s +‘§0 or -.1:1+:c2 0.
But ?_;_1= k, sin®d Ties on (3); therefore

£y

A Y.
< fc+:_%2=—-0 or 4= —kax,,

o

that i, S Mies on (ii). |
Theproof does not assumie thas the axes are rectanguiar,

80 fhab we have at the same time an analytical proof of

et Fundamental Theoremn. 1 the axes are rectangular,

S\bhere is an easy geometrical proof depending on Eue. VI. 3,
\/ which is left to the reader. d s

IL The lines am-tby 4o = + k(on+ by +¢’) arc harmoni-
cally conjugate with respeet fo the lines

ax+by+e=0 and aw+by+¢ =0,
for any value of F,
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Consider the four lines

an+byte=k{ds+by+e), .l SEUOUPR (1)
agrdby+e=—lkl@e+by+e) o (i)
ae+ by-]—c_ ...... (iii) ax+hy+e=0...... {iv)

On (i) take a point A(z;, ) (Fig. 33, p. 90); through 4\

draw a line to meet (iii) in € and (iv) in D. Mark on the*
line the point B{x,, ¥,), which is the harmonie. conJugate o
4 with respect to € and D.

Then AC__AD_m A0
OB™ "DB - w ™ (@
and thercfore the coordinates of U and Bliave the same
form as in Case i )
Tt remains to show that B lies on (11,)x D>

(' lies on (it1); therefore $
a{imit, +ni,) b(m""{z"i'ﬂqh)
W+ 1’?3,-4— T
hat i m_ aéﬁl’bq”rl_‘-c vt re e
that 1s, = by (v)
D lies on {iv); therefore
- a{mgygkaa,) | Vmy,—ni)
e m—m
s m_a'w +by+d
that 1s, N T e
Hen@%.}rom (v) and (vi},

+e=0,

+¢'=0,

..................... (vi)

‘ '\\ -t a&+by1+0+(m’xl+b’gjl+c’:
~\ azy,+by, e aa, by, o
~Qr az by e | asytbyte
\ 4 aa,+ by e am, byt
‘But %ﬁi’: k sinee A lies on (i}; there_fore
Wt DY t0 0 or amyby,to= — K@@t by,+¢),

¢ &+ by, o
- that is, B lies on (ii).

~
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Note that this is also an analytical proof of the Funda-
mental Theorem.

III. The lines

a” -+ 2hay + by? =0, (1) and (i),
are harmonically eonjugate with respect to the lines
@+ 2y + by =0, (iii) and (iv), L\

if ab +a'b=2R¥. O

Let the transversal y=1 meet the lines (j)z‘sfr;d (i) in

points denoted by their abscissae @, and z,‘and the lines
(1) and (iv) in @, and z, (Fig. 34). Then;é), (i1), (iti), (iv)

N

Y, Ky N

fi)

‘. ¥ic. 34,
form a h#vifonic pencil if (zame,) is a harmonic range.
But 2, @nd z, are the roots of ¢ +2hw4+b=0; and x, and
z, e{qm he roots @7+ 20 e +b =0, Therefore (@, gmy2,) 18
a Harmonie range if al’+0'h=2hk, by §44, ITI,
The method of proof wsed in T and 11 may be used here
JOdlso, and is left as an exercise to the reader, :
\ )
EXFRCISES XIII.
L. If the line joining 4 (,, &) and B{my, 1) meet the line
: Ax4-hy+o=0

in O, prove that i(; _ oz + by, - te
. g+ byt
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2 Tfa transversal DEF meot the sides B¢, €4, 4B of triangle
AB¢ in D, E, I respectively, prove that
BD CE AF
DO E4" FB™
and conversely (Menelaus's Theorem).
8, If the line joining Ay, 3) and B(x, »,) be cut in € by the “\
Iine joining (g, #,) and (z,, 2,), prove that
AO: I bk e Y0 Yy — Cg¥at LY — B 2 \AN
CB  ways— ¥yt Safs— st Bz — Vol O ’
4. If the lines joining the vertices 4, B, € of triangle 4 BQ bo any
point § meet the opposite sides BE, (4, 4.5 respectively in OE F
prove that RO CE AF ¢
o0 Za FB-Th s)
and conversely (Ceva’'s Theorem).
5. {ABCD) is a harmonic range on the a:—a-xis\\'The absciseae of
.1 and B are the roots of the equation #*—7z£5=0 and the abscisss
of iz —1; find the abscissa of D, \S
6. The points on the z-axis denoted by\e?+ 32— 2=0 arc harmoni-
cally conjugate with respeet to the paix ‘denoted by #+bri-g=0;

i

. find the value of ¢. o
7. The points 7, @ are ha;*méqfic conjugates with respect to the
points 7, =4 and x,=7, snd alte with respect to #;= -5, my=—-2,

where all the points lis on the‘s-axis ; find the abscissae of £ and ¢.

8, The three pairs of" goints #=2 and x=6; =3 and x=4;
#=—Tland =4 havex&gmmon segment of harmonie section ; find the
value of £ \ _ .

9. Prove thatethe'pair of points denoted by

(N ar+ By (et Y= (aet )b te)
is harmenpitdlly conjugate with respect to both paire of points
denoted\Dy, sz®+ 2bz+ =0 and @at+ e+ =0
1(},',*ﬁ\the points 2, 2y, #, #,; on the z-axizform a harmonie range,
so d&the points g, ¥, ¥ 74 01 the g-axis, where
m: \ : L_arth
\ } } Y=x+d
11, Prove that the lines
’ 93% ~ 2ay —4*=0 and «?+43zy-z"=0
form a harmonic penecil. ’ :
12, The lines
Sat—ay~y?=0 and da¥4-hay-3yt=U
form a harmonie pencil ; find &

GG £
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13. The equations of three rays of a harmonic penei] we

2w~y +3=0, Bz—1yLtT=0,

find the equation of the fourth ray, the first two rays being conj tgabe

T—y2.0;

raya.
14. Prove that the four lines 2\
Sy -2y4+1=0, T2y —4=0,
13210y +11=0, 17z—2y—5-0 Oy

form & harmonic pencil.

A

£
Nows

15, The lines y=m2 and y=myy arc harmonically £owjlgate with
respect to y=myx and y=m,z, if O ¢

4

&/
my =Wy My — T, 18 PR\Y
Ty — iy M — 3 v

16. The lines Y=gz and y =y are hxaQ}}ﬁnf_ut]Iy eonjugate with
vespect to the lines au +2hay 4+ by?=0, ifg 4,
a+-A(m +m,) -!—jr.«}é i, =10, i
17. I y=mwm, y=m,, Y=z, y.% -m';x forie a harmonic pencil, wo do
Y= ®, y=uy, ;;;: ﬁﬂﬁ, F=ngn, ) .
where X L2 tbm

N et dm

18, Tf one pair of ¢ aijugate vays of a harmonic pencil are at right
angies, they are t;h,e{[‘ai,sectors of the angles formed by the other pair,
and conversely. ‘\\"

47. . Threexor Mpi‘e Lines through the Origin,

N . .
Let:i\:,@,ram-lwz{) (1), Y—mz=0 (2), oy — g =10 (3)
be\b’f@;éé lines through the origin, Then the equation

A - :
| N\ (Y —m@)y ~ma)(y—me)=0 ... (4}
\i;\;'repmsents the lines (]), (2), (3). '
1i (4) be expanded, it takes the form

¥ - (m,y + Tyt 'ma)y% + (mgm, + M+ g Y yae®

o — My igmge® = 0.,
This is of the form

aw3+ow2:y¥f:xy2-+dyé=0, ........... R (5) |
-
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so that (5) reprcsents three straight lines through the
origin of gradicnts m,, m,, m;, where

¢ b
Ty Wy g = — P + gy - Ty = =7 ;
I N
MBI T = 0 o (6)
. - . £ N ¢
‘Similarly, the equation )
| _ N\
- aot -+ baty + oy - deyP eyt =0 W
represents four straight lines through the origin; and 80 on
m\

Tx. 1. Find the condition that two of the three lmes
o+ bty eayt oy =0 \

should be at llght angles. ~'\\"
Let the gradients of tha lines be my, Mz, 7, (¥

Then cither  (1-4anma}=0 or (1 +mgm§).==0 or  (1+agm)=0.
Therefore {1 -+ megma)(1+ m;:na)(], %-msml) 0,
that is, 1 +{m,my-Hmghg+mety) +m1m@3:-35( w1y Mg+ ig) iy e gtme? =03
therefore, by {6) asbove, £\

TR
+~e( E arTadE
or . u\ ot B+ d =0,

Siuce the steps are ﬁ@\ezsthle the condition iz sufficient as well as
DEcEsRArY. 4

+

%

Ex. 2. Find thﬂ;ileb( wsary and sufficient condition that the gradient
af nne of the@es specified by the equation

NV 35 — g+ gt — pgr = 0
b eqt';z&t) the produn‘t of the other two. '
' Ei:‘d If the gradient of one of the three lines

7

Y 9 — py et ey — par’ =0
\He equal to the sum of the ot,hf-r two, prove that
~dpypytBpy =03

atdl show thmt the condltlon is sufiicient,
Tx. 4. If the gradients of the four lines specified by the equation

o= eyt — payat o pyt =0
are in preportion, prove that p,2=p,p:2; and prove that this condition
is sufficient.
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48. Change of Origin, Let X'0X , YOV be a rectangular
system of reference, and let E'wf w'wy be ancther rect-
angular systém of reference, the z- and Eaxes bheing
parallel and the y- and s-axes also parallel {Fig. 35).

Let (2, 4) be the coordinates otP a point P referred to
X'0X, Y'OY: let (& #) be the coordinates of P referyed
to £uf, w'wy; let (h, &) be the coordinates of w referredito

X0X, YOV e
then x=¢4h and y=5+k . QO

Proof. Let swy meet X’0X in H, and let{ }1;@[’, NP be
the ordinates of P referred to the two systefus; M lying on
X'0X and N on gug . )

Y \
N
N
’F’
g *'.::ﬁ w N £
X 0 H M X
N
¢\J .
’\\’ 3 7
7N Fig. 35,

Then M O.M = OH + H ) = OH+wN =it gmgsh:
»\"1\ y:‘MP=‘1’L“"T+ATP=IICO+NP=K:+;}:,H_,?{;.

N/

\?M‘ example, if the bisector of the angle YOF lie referred to parallel

Jaxes through (2, 1), its equalion reforred to the new axes Fwl, voy s .
AN

~\J

\;

p=L41,
Faor g;#x_(i) is :its_ equation referred to the firgt axes; put
w=L+h=£42 and ¥=nt+i=n4+1
n (i) ; then we olitain
: a+l=£4+2 o n=£41

a8 the equation of the line referved to the new axes, This is-easily
verified from a figure.
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49. Botation of Axes. It iz sometimes useful to change

- from omne system of rectungular axes of reference to

another formed by rotating the old axes through an angle;
we proceed to find the formulae necessary for the trans-
formation of equation‘%

Tet £08 Uy be rectungular axes obtainced by rotating
the rectangular axes X'0X, Y'OF through an angle &
{Fig. 36); let (w, %) and (£, #) be the coordinates of a pomb .
I referred to the two systeing.

e
Then x={eos H—ynsin b, R V
y=¢sin0+47cos 0. AN 3
&
AS
Y] ‘
3 . ) :\\.}
O
Ny :
.'s:“ N
X 0~ M X
RN
£ \.}' K
Y
. "; Fig. 36,
AN _
Let 0 angle £0P =¢.
'l‘h}?i:\/“ x=0PF cos (0+¢)
\) = 0P (cos 0 cos ¢p—sin O sin ¢)

=(0P cos ¢). cos § —(OPsin ¢} . sinf
= £cos B —psin b

Also y=0F sin {0+ ¢)

= 0P (sin B cos ¢+ cos B sin ¢}

= (0P cos ¢} . sin 8+ (0P sin ¢} . cos 6
= £sin 8+ 5 cos 6.
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Ex. 1. What is the cquation of the line Zx—3y=" (1} referied to
parallel axes £€ and o'y drawn through the point ( — 1, ~2) referred
to the 2~ and y-axes? ' _

Put g=£42=£-1 and p=m+k=5-13 in equation {i. We obtain
BE-1)-3(y-3)=50or 26 3n+2=0 as the equation of line {1}, when
referred to the £- and s-axes, :

Ex 2. Find the equation of the line 3z — Zy =4 referred 1o paralléIN
axes £¢ and 'y through the point (1, — 1) referred to the old axes.

FProceeding as in Fx. 1, we obtain as the equation AN
BEFD)-2(y-1)=5 or 3£=2y ... O

It appears that the line passes through the new origin,ﬁs it n:ust,
since (1, —1) les on Ax —Zy=5:. Bince the gradient iiheath caze is
38, it 1s clear that equation (ii) is correct. '\\

EXERCISES XIV. \
x.\\..

1. The two lines S —dy+2=0 and x <yF1=0, when roferred to
parallel axes &% and 4, are repl'esent-é‘d'by the equations 3£ = 4y and
&= respectively, Fiud the eoordinufes)of the new origin referred to
the z- and F-AXes. o)

2. The lings * (=g +Blety+4) =0,
when referred 4o parallel axey thtou gh the point (4, &), are represented

_ NS

Find 4 and £, -

3. Prove that thpiﬁg}&llels through the origin to the lines

’\*Q,x‘='+_ Sy — Byt — B+ By —2=0
are the lines O\ 2o 4 By — Byt =0,

4. ¥ind t]\ié £quation of the parullels through the origin to the lines

. ‘\Z:; et 2hzy 4 byt Lgx 48y +a=0.

5. IL @s the angle between the lines _

A\ @2+ 2Ry + byt + 29w + 3y + 0= 0,

pro v} that tan §=2F_ abfla+8),

RN yProve also that the lines are perpendicular if a+2=0,
m\J ' .

6. DTrove thut the sghation
Uz ~pP+2h{a—p)y — )+ by — g2 =0 :
represents two sfraight lines passing through the point {p, ¢} -
7. Prove that any puir of perpendicular lines through the point
(2 ¢) can e represented by the equation )

(- ?;)3+2/¢($_p)@ — g) - (y — g)3= g,
wher_e Aisa VArying constant { parameter), .
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~ If such » pair intersect the m-axis in 4 and 4' and the y-axis in
B and B, prove that
() 04. 04" —p(04 + OA )+ pt 49°=0, -
(i) 04.04' 0B . OB =-1.
8. If the lino-pair

aat 4 2hay + b+ Bgr + 2y Foe=0 (i) 7\
be referred to parallel axes through {p, {j_r) 0 that their equation takes
the form a§3+ 2,6,5??—]—!}7}2:0’ .\:\’
find p and ¢ iu terms of the coefficients of (1). O
8. Parallels to the lines _ A\
ax®+ gy byt =0 P\

are drawn through the peint (p, ¢) ; find the equation of”&egl.)iseetors
of the angles formed by the parallels. 1f per]yendicu]:lljsé are drawn
instend of parallels, find the cquation of the bisectars of the angles
g0 formed. ?

10. Tf a given line he referred to ps,l-allel.ajb'\(’aé‘through any point
on a line parallel to the given line, then thi hew erquation of the line
is of the same forty whatever be the poditien of the origin on the
patallel line. o\

11. Find the equation, reforredebatk to the a- and g-axes, of
a straight line whose equation rgferved to parallel axes EE and 2y
through the point =3, y=—2 ¥4 12§ - Ty=11.

12, Through the point &<1, y=—1 are drawn & and gpaxes
parallel to the #- and y-ax€8> The equation of » line-pair referred to
the £- and y-axes s \\ _

& Py — 3 - 26 + By —2=0.
What is the equa{l’qﬁbf the line-pair referred to the z- and y-axes?

13. Find \\1?11? the equation 2u—y+3=0 becomes when the axes
are tu‘rne@ukh‘t: ugh 45° : .

14 F@dﬂ’ivhat the equation

RN\ 2 — gt =220 - 10, /2y +2=0
b;;v\mﬁés if the axes are turned through 45°
i\; 15, Transforn the equation
- (- g =a(a+7)
to an equation referred to axes which bisect the angles between the
original axes.

16. Transform the equation 23+ y5=a® to another set of rectangular

axes which have revolved in a nogative direction through an angle

i from the given axes.



D

102 ANALYTICAL ¢GEOMETRY. [ch. vy,

17. Transform the equation
(2®+ 032t + %) +2(e? ~ %)y = 20752

to axes bisecting the angles formed by the original azes, and reduce
it to its simplest form,

18. Transform the equation @ —2uy cot o~ yi=a? by turning the,

2
19. Transform the equation p
xQ—y9—4J2:-:=-8\f2_y+4=0 g ™
by turming the axes through 45° and then moving the, 811gin to the
point (-2, —6) reforred to the axes so turned. Show’gl']at the egua-
tion then becomes £9=14, and thence graph the gi\{mbequa.t-i011.
20, If the expression )
o+ Zhay + byt + 9gw ¢ ny\b“ff

be transforined, by turning the axes (§ 49NH1‘oug11 un angle @, into
the expression ‘ \Y

axes through an angle (o:.—f), and thenca graph the equation,

@&+ 2K L U+ 200 27 1,
prove that o' = coa?f + 24 siuﬁ’ﬁ(}iﬁ 8+ bsin2g,
b =asin2g— 27@43{1':{ Beos§+5 costf,
K={b—a)sin X5 G+ A{cos’d — sinp),
and then show that a4 6? w4+, ab—ii=qb _j7
whatever be the ar{g],e{?.}
21, T TP dgy 1 \;.yg becomes a'£24 En? by rotation of the axos,
show that o =8 B=3 or o'=3, I'=8.
If 242 + _1?‘-45;;{ % 3y* becones /£ 4 by?, show that a'=86, b= —T or

=7 <%

(N
22. Hithe axes are turned through 45°

o

» show that the equation

o\ Bk By .
hgbomes P2 at26)=3./2. afi—ugs
CANY
~O
4
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THE CIRCLE. N

%

50. Fyuation of a Circle. A circle is specified .w]:'leﬁ we

know the position of the centre and the lendth of the
radius. K \%

Let axes X'0X, Y'OY be drawn, and sca{e.-uriits fixed.
_ N

&

Ry

]

£

P,
AN
LY
—

|

- ]
11 RN

Fia. 37,
1. Suppose the origin O is the centre of the circle,
Let r=radius of circle.
GoAh

2

N
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Let P(h, k) be a point on the circle (F ig. 373, M the
projection of P on X'0X. .

Then - 024 MPi= (0P,
that is, Mg l2=at

Writing » for £ and y for % to indicate a variable poinf™
on the citele, we got N
x4 yt—p? ¢\

NS ©
as the equation of the eircle. M

IT. Buppose O, the origin, is not the centre c}f the circle.
Then the centre of the circle, as well as thé, radius, must
be specitied, V-

- )
__.___Y . . : Az d ]. i I
; TS
T El™S N |
T ] '
LS Vil N
i fiaN 1y d
| | ¢ ™ - / \
AN ClZ f
N | P f
puEvaERNesnE b
NG T 7
! N T LT N
N\~ ST
A o T TR T %
O 1 e O A Y M _____.____,_Ji_ I

) T 38,
Let (a, b) be the coordinates of the cenire.
Let +=radius of circle.
Let Pk, k) be any point on the circle.
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~ We have to translate the defibing properly of a circle
info an equation connecting % and & with the constants

a, b, » which specify the circle.

Lot € be the centre of the cirele.
Let A, M (Fig. 38) be the projections of ¢, P on X'OX.
Tt the parallel to X'0X through € meet MPin N

. 'Then OH=a, HO=b, OM=h, MP=FL O
Hence ON=HM=0M—0H=h—0; SRR o D %
and NP MP—MN=MP—HC=h=b ..oohi(2)
But, the defining property of the circle gives E@;?qu:ition
_ OP% =92, G
Therefore  ONIHNPP=0% )
or (h—aY+(k—bP=1r% by (1.,)'\’3}1 ).
Writing = for b and y for k to represent a variable point
on the cirele, we get A

(z—a)f+{ ;t;;—- ?;)E =7
If then a system of recta{r;"gmila,r axes be chosen, so that &
gircle, radius », has its gontre at the point (g, b), the circle
can be represented by-bhe equation

CETap+y—br=1"
I (@—a), (b7 be expanded, we shall obtain an
equation coufgining terms in 2% v% o, y and an absclute

term ; huhBhe coofficrents of «® and y* will be cqual, and

/AN

QO

the cquetdon will contain mo term im ay. Henee a circle,

specified” with reference to rectangular axes, can be repre-
2 S . .

sented by equations of the three forms,

oY E—aprower

X+ y242gx + 2y +e=0,
.Ax2+Ay‘3+2Gx‘+2Fy+G =0. -
'x.1. Find the equations of the eircles specified as follows:
(i} centre (0, 0); vadins 2. '
A2yt =72 becomes @¥+y’ =4
(i1} cenvre (0, 0}; radius 4. (i} centre (0, G} ; rading b,

)¢

N
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(iv) ecnfre (-3, 1); radius 2.

(z—aP+(y-bF=r2 becomes (x4 32+ (y— 122
that is, - #2460 — 2y +6=0.

(v) centre (-2, 2}; radius 2. (vi) centre {2, 1; radins 3.
(vii) centre (0, 1) ; radius 1, (vili} centre (0, — 1) ; radius 2,
(ix} centre (2, 0); rading 3, (x) centre (=3, 0}; radius 5,

- {xi} centre (2, —3); radius 1. (xii) centro (—3, 4); radius '.7':\*
(xiii) centre (2, —§); rading 4. (xiv) eentre (-3, —1); radik k1

"Ex. 2. Find the equation of the circle whose centre is ‘ig'gc "('Jl‘l.;-_‘;.lll
and which passes through the point (3, 4). A )

Ex. 3. Find the equation of the circle whose cenfvc™is the point
{—5, —1) and which passes throngh the point (—10,%L1).

Ex. 4 Tind the equation of the circle whose jeentre iz the poing
(1, —1) and which passes through the point (9,;}2%.' :
Bx. 5. Find the points in which the eIy, centre (2, — 3), radius 5,
culs the s-axis, O
Ex. 6. Find the points in which, the ‘circle, centre (5, 1), radius 13,
" eats the y-axis. T\
Ex. 7. Tind the points in #hich the circle, centre (-1, 4}, radius
2}, cuts the line y+1 =0, -

Ex. 8 Tind the poinﬁ; In which the éircle, whose centre is (o, 8)
and which passes t-}.LI‘\O[\ng (—¢, 0), meets the line y=25.

Bl The gqgéti’bn X y? - 2gx + 0y L ¢ =0 represents a circle.
‘The con¥erse of the precedi ng seetion is as follows
Anyeguation of the form
O B 4 3+ g - 7 A (1)
o ArP+ Ay + 2024+ 2Fy +0=0 ... (2)
<\ ) i-'%:fermd to rectangalar axes, represents & cirele,
For (1) and (2) are equivalent to :
@+ Y+ P=g4f2m . o)
’ 2 3 ;
S e Pt oY L A R
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and therefore ropresent eircles whose centres are respectively
. G F " .
| (—g,—f) and <_Z’ - Z)’ and whose radii are respectively
\.-"f)rz-{-jT—é and 'Gém/.d.

Tx. 1. Prove that the equation #?+y%+ 2242y +1=0 represents a

givele whese contre is the point (—1, — 1) and whose radius is 1. O\
Collocting the terms in @, and the terms in 3, we geb \' N
(22420 + (52 +2y)+1=0. - \
N
| | ! i i ! N
I ' qL ¥
~ ]
T X’ 5 N
L] ol W
] el AT
Fi
K
— 5 A .’ ‘ | —-—
| i LY
i 3|
Pt ' i 1
\ NN
|| ridh ri ]
RN /
A —
A .\
o) . ’.
A N - [
W 4,
I i
O\ i I I | ]
.j S l ! | | [ I
~O  Fie. 3.

Completing the squares, we have

. (24 2o+ 1)+ 2+ +1=2,
that is, (r+12+(y+1)=15%
or distance-of (x, ) from (-1, -1} is L.

Henee locus of (z, ) is the circle centre (—1, - 1), radius 1. (See
Tig. 39.) .
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Ex 2. Find the centre and radivs of each of the following vireles:
(i) &' +yf-6u-8y=0; (i) 272+ 628y +0=0;
(iily 224 5% - 2z 4 2y =23 ; (iv) a2+ + dis— Gy =3

A l .
LIy 1= ARE=REREE
_ i
: i X N
ol ! \..
1 e ]
/ d ) L \\
/ |
i S Nb!
[ | i iy
[~ L.
\ KD i
A - Vil !
| s N o [ V. X
\'\.. ] -
1 A I
L : s i ;
- Earas
| [l
) Fra. 40,

Ex. 3. Ghdose uxes and seale-units, and draw the circles represented
by the igll}wing oquations. Bpecify the cenire and radius of each,

L

(g2 d (i) 22458 -9=0; -
G P - Ge Ay 120 V) @445 -6y-3=0;
AN A4yt le~2y=2; - (vi) 2% 492 6w — 29+ 3=0

\ 7 (viD) 2224204 100 — 6y - 1=0; (vii) B+ 3y% - 2+ dy=0;
(ix) 5%+ 5y 45+ 5y =8, '
Note: (vi) may be written in the form (v — §¥+{y ~ 1¥=1, which
represents the virele of Fig. 40. '
Tx 4. Find the equabion of the circle
(=1, ~1) and (2, 5) as diameter.
Let (A, £) be a point on the circle (Fig. 41).

describod on the line joining
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The gradient of join of (4, £) to (-1, -1)is z_i_i .
And gradient of join of (&, &) to (2, 5) is i__z.
el
i N\

T
B SEe

T

T
T
|

Bat these lines forlx@ .a;gle in & semicircle, or a right angle.
ﬁ_‘l 'E___)_H -1 (§ ]9) .
oD A+l h-2 ’
thoerefors O\ Ry de-T=0

Write éf\for %, % to represent a variable point on the circlé;
the r’cqh@gﬁ equation s
O '

Hence

. it —x—4y="T
il “§2. Worked Examples. We shall now worl some examples
or the mode of translating into sn analytical equation the
conditions that speeify a eircle geometrically.
Ex. 1. 4 and # are the points (2, ) and (-2, 0) respeetively. .
A variable point P moves so that PARF2PBE2=22%; prove that the
Jocus of P is @ circle of radins 2, whose centre is ¢, the point of
trizsection of 4B nesrest to B.
T.ot (%, k) be a point P on the locus (Fig. 42).

Then PA =(h -2+ 3*; PB'= (h+2F+5%



116

But
therefore
that is,
or
or

ANALYTICAL GEOMRIRY. fen. viIL

PA I PR =991
(A= 2P+ B 2(h+ 2)+ 202 =223,
3R B+ 4k =103,
R V1)
(b B¥+it=a.

TT ; H1 A
i EETED
i Sl
g FiNupan
:::::;f:?'_: pigEEes

0 I o

Writing =, ior A, k to denote a variable point on the Jocus, we geb

A\

(e Pryi=g,

. which igsthe equation of the locus, and represcets u eircle, radins 2
and centfe (—3,0) or O

<

B2, If 4 and B arc the points (¢, 0) and (5, 0), b>a, and 7’ is

- ¥arable point above the zoaxis such that anglo 478 is 45", prove
St the locus of Pis an arc of a circle passing throy gh 4 and B.
L Leb P(k, &) be a point on the losus,

N/ The ghadient of

sk o N
Pdis ey aud the gradient of 17 is i

Hence, using the formula tan f= =", {§ 35),

we have

]+mlm2
E %
=l
Yiteiza
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- FA—ay—-k(A—1)

f oy L LT =
therofore TR e

that s, - A= h{a+ by tob+B=k{b—a)
or B -ila+b) 4 kla— b+ ab=0.

Writing &, i for &, % to indicate the variable point P, we get
a4 32— (o + B+ (e — b)+ab=0.
"Ile loous of P is therefors a circle, passing through (z, 0) ancl'gli;{}):’
N\
kx. 5 TFind the equation of the circle which passes tln:oﬁg}.l the
three points (1, —1}, (1, 4, {4, —2) AN
Tt the required equation be ~\ é
a2yt 2gr 497y +e=0, \.m:\"
o that it remsins to determine g, f, ¢ \4
- Sinee (1, — 1) lies on the circle, we have &)

1 +1+2g—2f+c=qg\

or 2g - 2f e RIGN [EPUTURTTUUORPPTURPTRIOOIN 4§ |
Similarly, since (T, 4) and (4, —2) lie‘or! the circle,

_ 2987 RPELT=0 ovrreecnenenrmssmne (2)

and By S AFF CHZO =0, e (3)

(1), {2}, (3) ave three sin),u[’ta’u'eous equations in g, £,
From (2) subtract (1) {s{hen

Lr+16=0 or f=-%
N/ - a
From {3} stlbtx‘el}\\(ﬁ-) ; then
WV 87 —12/+3=0,

thatis, N 6g+18+3=0 or g=-%
Go Lot (1) and subsbitute g = —, /= — 5 then
\:w/ —T74+34e+2=0 or e=%

’\ . )
,:No back to a4+ 2gr+2fy+e=0 and substibute g=—3, /=%,
~e=2; then the requirved equation is found to be

O
\”\~' ' iyt -Te—3y+2=0. B
g The centre of the circle is (3, §); the radius is l-"@ ‘

2

EXERCISES XV,

1. Find the equation of the eirele which passes through the poiuts
(2, — 1), (2 3) and (3, -1 Find also its radivs and the coordinates
of the centre. :

N
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2. Find the eguation of the circle which passes through the origin
and makes an intercept 2 on each- of the axes, :

3. Find the equation of the circle which pasges thron eh the origin
and makes intercepts of 2, —6 on the axes of o and y respectively.

4, Find the centre of the cirnle which Dasses through the points ,
(2, 1): (" 2, 5)9_ (_39 9‘)-

5, Find the squation of the cireumecirels of the triangle \\;}{ﬁm
vertices are (2, -1), (5, -4, (=1, =1). What is the radiug sl the
eircle ? S \

8. Find the coopdinates of the centves of the circles &whicl: 7ass
through (7, 1) and (9, ) and have a radius 5. : A

7

. . N\

7. Trace on the snne dizgram the loci whose eqlalions are
O yed Sagie2 (e-2R(alYel
Find the two points common bo the three Téin"

8 I A and B are the fixed pointg (T,:\O), (-1, O and P is 4.
variable point (x, #), sueh that angle AN half a right angle, prove
bhat the equation of the locns of iz &2 PP -2y=1 op gty =1
according as P is above or Lelow the. Zaxis. Draw the loi,

9. 4 and B ave the fixed poings::(fi, 2% (7, —1); find the equation
of the cirele doseribed on 4B ag\diameter.

10. Prove that the eynadidn of the circle described on the join of
(w1, 21} aud (z,, #o) A8 dipadebbr is : :

& 3
(-”‘R‘QI)(”? — %)+ — gy — yn)=0.
11, If the coordinates of A, B, P are (tey O} (b, O, (m, 5 ), Where Fis

a variable pointysieh that angle A PR is «, prove that the two loci of
L are given L the eyuations

N Az—a)(z~ By+yt L (a— By ot a=0,
and as igﬁ“\éa"ch locus to its equation. Draw the loci.

a8 A \ariable Point £ moves so that. the sam of the squares of its
distances from the points (2,05 (-20)is 16 ; prove that the locus
. ©ORP §a a civele, contre the origin, radius'2.  Draw the circle.

Y, 13, A variable POint P movos so that 2242137 i 10, where
A, B are the fixed points (1, 03, {(~1, 0) res vectively ; prove that the

loeus of Pisg 4 cirelo whose centre is at ¢ in 4B, where AC=3.8.
Draw the circle. )

M. A variable point P moves so that P42 _oppgeig 4, where 4, B
are tha peints (1,0, (-1, respectively ; prove that the locus of &

is a circle whose centra is the point oltained b toducing A B it
length through . Draw the vircle, ;.YP neing A8 its own



53) RXERCISES XV, 113

rc

-~

15. A, B. ¢ ave the points (1, 0) (-1, 0}, (0, 3) respectively,
awd the variable point P moves so that P24 P+ Pri2is 17, prove
that the locus of P is u civele whose centre is the point (0, 1). Deaw
the cirele.. S

16, A variable point P moves so that 7’4 {PB=23/2, where 4 and B
are the points (—5, 0) and (5, 0) respectively ; prove that the locus
of 77 is the cirele, contre (13, 0}, radius 12, Draw the civcle.

17. A point moves so thal the square of its distance from the origin

iz twice its ordinate s find the equation of the locus of the point and )\°

disenss the cquation. Draw the locus. £\

"18. A point Pmoves so that the rectangle contained by its di%tatﬁbes
from the lines y—y—0 and w-+y—0 is equal to the square of its
distance from the line #=2; nd the equation of the lodys of £ and
diseuss the equation.  Draw the locus. 7'\

19. Prove that the intersections of x—2y—1=0 aid @ty —2=0
with Zp—2—3=0 and -y~ 1=0 lie on the circlg Pyt - Sx—y+1=0.
Draw the lines and the virele. ¢t .\.\

90, Prove that the two lines specified B thé aquution
{(Zr—y+3)bxt+ S’y‘—’ 99) =0

~

intersect the two specified by Rad
(- 3y + 14§+ 4y +1)=0
on the eirele whose egqualion ,is" v
9(22 +g8) b8x — 15y — 101=0.
21, Heolve graphicad[\\_’\i{?}r% simultaneons equations

A\ PLENY
Q) a2y =4.
22. Solvg,\fgmiphica,ﬂ y and algebraically, the simultaneous equations
:\’ Byt —dr—-2+1=0;
.'s'\ byt —bety—6=0.

...\‘23’.' Tind the equation of the common chord of the cireles
mJ

\s;"’ sttt e —dy+T=0;
2ty —br+2y—3=0

53. Eguation of the Tangent to a Circle We proceed to
find' the equation of the tapgent at a given point on a
circle specified by an equation with reference to rectanguiar
a:xes. '

N\
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I Let @?+y2=19% specily a circle whose centre is the
origin 0, and whose radius is .

Let P(x;, ) be a point on the eircle and draw P7 at
right angles to OP; then PT is the tangent at P.

We have gradient of OP:%.

1

But PT is perpendieular to O.F; \ )
~
thercfore gradient of PY'= -—j_‘i_ U
g1 l“.“

. A\ 3
Hence P is the line through (7, y,) of graditat —u,/y,.
Therefore the equation of ST 15 \:\".‘lg o

@ ) '
Y¥Y—i= ""}(m_mz)}\\“
. . yl H'\v
 that is, Y=t gV

or Xxl-—]-yylzr‘z_‘;,g

IL. Let 2’4 32+ 292+ 2?‘5{.{-0; 0 represent the circle whose
centre is O, (—g, —f). 87 _
Let P(x,, y,) be a poitit on the circle and draw PT por-
pendicalar to ¢/f?; f,h',h PTis the tangent at P.
_ LAY :
Now N gradient of 0P ~ntt
P . &) =+ g
N4
and Y, FT is perpendicular to OP,
:‘.\I, . ,
'I‘h@eff)re aradient of PP= %139
W\ g -

i&ﬁence PT'is the line through (z,, 4.} of gradient —{—bl—:"f:—[l
/ ' Yot

S

\\: “ Therefore the equation of P is

g
yl +f(m ml):

that is, (&= + )+ (y -y )y, +F)=0
or w2+ Yy + gz + fy =m12+?7"12+9931 + 7y

Y—-Y=



R
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Add to each side ge,+fy,+c; then the equation of the
tangent at (z,, y;) becomes
iy + Yy (@ )+ Ty T
: =$12+y]_2+29.’131+2fy1+0
or xx, +yy, +eE+E)+ T +9)Fe=0
It is useful to note that the cquation
w2412+ 29w+ 2fy +e=0
may be transformed into
ey + i Hg(@ ) YYD+ =0
ape . &
by writing @z, for #*, 41, for g, () for 2oyand (y+Y,)
for 2y. v
Bx. 1. Prove that 3x-+4y=20 is the ta,ngen’t;%z:%, 4) to #2447 =125
Ex. 2. Find the equation of the tanged€ )
(@) ut (2, 3) 0 22 +y2=13; (U Gt —1, 1) to a%+y7=25
Gii) ab (2, —1) to B2+ y*=53 L¥pat (3, 5) to Agt- B —dy=8;
(v) at (1, ~2) to £ 4 R — dn By +11=0;
(vi} at 2, —3) to 2+ A1
{vii) at (-3, ~2) to ‘a:‘i‘+y”—F]Ox+ 2y+2'l =0;
{viii) at (& to 23;?,:{—‘%?/24—9.174- Gy=2%1;
(x) st (§, -1 x.o'\z%s.cwﬁ + )+ 24w — 36y -=167.
Ex. 3. Show tha}tlm equation of the tangent at the point (xy, 3}

on the circle whisgbequation ia
N/ (w— a4 {y-by=r
muy be p}}t\’in‘t-‘ne form
:"\::’ ("’-’1"C_‘)(x—-1’1)'1‘(&’1'—5)(31'“%)30-
Tt Show (i) that the point (adrcos 8, b+rsin 0) lies on the
r:ir:(;s given by the equation

NS (w—af+y—bP="r,

"ﬁ'hatever_ be the value of g, and (ii) that the equation of the tangent
at Lhe point s (- a)eos B+ (y—b)sin O=r

54. Pquations of Secant and Tangent, We may obtain the
equation of the tangent to & gircle witheut assuming that’
it is the perpendiculsr to the radius to the point of contact,
but we musb in that case have some other property of the
tangent on which to base our reasoning.
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Suppose the sccant 4R (Fig. 43, p. 1213 to twen about
P il it takes the position of the tangent /7' in {his
position the two points in which the line cuts the eirele
have hecome coincident, We may therefore detine the
tangent at I to be the straight line which meets the eircle
In two cotneident points at 1.

We shall find the equation of a secant in two ways,

taling the circle whose equation i \ N\
B2 = 2 e (1)
Gradiont Method, The equation of t-l}(:,"ﬁllt’:;: Joining
(ml: ) and {atg, yg) Is ..,'\'\’
' Y1y =y—‘ﬂ2-(;x-x ) N\ (2)
T "IN

Equation (2) is true whethor the glathis Tie on the circle
(1) or not; we wmst transform dquation (2} so that the
points (i, ¥,), (x,, Y.) may be reftricted to the eircle. The
conditions that these points liegn the circle (1) are

rz:lz-l-ylg:’f'g,.j@hd A=t (3)
and therefore, by subtractiom,

CESE =yt =0

or = gl +2,) + (5, — 1)y, -+ ) =0
80 that the gradidnt of the secant, Is given by the equation
2O e ove, @)
e \ *, B Tl 2% Y+,
Eq{&‘i’gj@n (2) now beeomes -
O\ ) o
) Y= ‘,__'__(93_331)
."\', \ ® yl +?7r2
o) (&"1““‘52)‘?34‘(19’1‘5‘92)?}“—‘7'2+3f'1932+y1?/2: e (8)
since Ty, =2

1t is casy to verify that equation (5) represents the line
through (z, 4) and (3, 9,), provided thege points lie on
the circle (1); apart therefore from the particular process
by which the equation has been reached, we know that it
represents the required secant,

N\
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If we now suppose (7, ¥,) to become coincidenl with
(2,31}, we get the equation of the tangent at (2, ¥y),

Sz 2y, =7+ Pyt =20
that is, - DA YyY TR e N ()

Burnsidds Method. The following ingenious method is
due to Burnside (Salmon’s Conic Sections, § 85). 2O

T'he equation of the secant through the two points (g N
and (z,, %,) on the cirele (1) is A

{m— 'T‘l)(w _wz) + (5’ - 3}'1)((3 - yz) = a4 yE - ?‘2: ": vide (7)

This equation, though apparenitly of the secand degree
in @, y, is Teally of the first, becansce the tehbs in 2° and 4%
sancel ; it is therefore the equation of soute straight line.
Next, sinée (m,, y,) lies on the cirele g),,,\the right side of -
equation (7) will be zero-when =M yand y=y,; but the
loft side is also zero when m =g, dud y =1, and therefore
the straight line passes through«gs, ) Similarly 1t may
be proved to pass through (wynds)-

Equation (7) when simplifidl is the same as (5); il In (7)
we put x,=a, and y,=1,, We get cquation (8).

When the equation gfbhe circle is

fz,‘zq‘—.yz+29w—}—2ﬁy de=0, i, (1)
we find for the gré}l'ent, instead of equation {4), the equation
2O Yt ot (@)

e \d By — %y Y+ 2

and th ezﬁﬁhstcud of equation (5), we obtain
S@tat et @yt 2y

P > =m 2y 290+ 2y 2 T Yl
V), e e By Y Y oo e N ;%)
We then deduce the equation of the tangent
gy gt e ) FF I F =0 e )

Instead of equation (7), we take now

(o) (=) + (@ =y )Y —92) =27+ 7+ o+ 2y +o (7)
~which is readily scen to give the sccant through (z, ¥;)
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(%, 45).  Put #y=2, and y,=1y,, and we get the equation of .
the tangent.

55. Ooincident Points. The idea of comeident points may
be utilised in other ways when treating of problems on

tangents. For example, consider the equalions \
Yy=2x+e ... (1) wlyt=20.......(2) o
£
The line (1) intersects the circle (2) in pointg“yrhose
coordinates are obtained by solving (1) and (2) s simul-
taneous equations. In equation (2) put 2+ ¢ b1k and we
find for the abscissae of the points of inteérsection the

equation 52t A 0 — 20 = 0NN (3)

Equation (3), being a quadratic, wiv’,éé ‘two values, 2, and
2, say, for x, and then equation (1)’~ga}v’és two corresponding
values u, and g, for v the ling™§“therefore, in general, &
secant which ents the circlgzat”the points (z,, ¥,) and
(%3, o) The values of z,, Yy, Y, are

— 264+ /(1008 — 20— J(100 =) |
m.l:—u—ﬁf : 3’}2:—— -——57,

6+ 2 /(100 ¢%) =2, /(100 — %)
y] = ¢ % - H ?Jf*_’ = —5‘—“"'

It «* <100 these values arc real and unequal, and the
secant cutg Phe circle in two real and distinet points.

If ¢ X100 the values are imaginary and the line docs
not meetthe cirele at all; but just as equation (3) is said
to linve two imaginary roots rather than to have no roots, .
903t 1 convenient to say in this case that the line intersects

. &‘fhe circle in two imaginary points. The conception of
s\ Amaginary points of inftersection often simplifies the state- -
\/ ment of theorems.

There is, however, another -case, namcly =100
Equation (3) is still a quadratic, but its roofs are now
equal and the points (@, ¥,), (%, ¥,) are coincident, the
point in whicl: they coineide being

T5 5/
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the Iine (1) is now a tangent and (—2¢/5, ¢/5) I8 its point
of contact. The solution z= —2¢/5 and y=e¢/5 may be.
called a repeated solution, since x=—2¢/b fawice and
y=¢fd twice.

When =100, we have ¢=10 or —10; we thus have two
fangent lines,

When o= 10, the solution z= —4 and y=2 is a repeated

solution, and the line (1) becoues O\
y=2w+10, N\
which tonches the cirele (2) at (—4, 2). N\
When o= —10, the solution ¢=4and y=—is 4 7e-
peated solution, and the line (1) becomes RS
y=2a0~10, ’

which touches the cirele (2) at (4, —2). N

We have thus solved the problem ofifinding the tangent
to the circle (2) of gradient 2; thergage two golutions, a8 1s’
geometrically obvious. « W

Again, consider the questionsiwhat relation must hold
between the constants m andbe 1f the line y=me+c¢ s a
tangent to the circle #?+ 328w ?

The equation for the akscissae of the points in which the
line cuts the circle is,.\

(1 %Q{L’”)ﬁ + Zemar 2 —ri=0.

The two points will be coincident, and the line will there-
fore be a tapgent if this equation have equal roots. But
the condition*for equal roots is

dotm? = 4(1+m?) (" — ) or E=r{l14+m’)

Th'lﬁ the line y=ma -+ /(14 m?) is a tangent whatever
belthe value of m, and since the root may have either the
N -y . .

~\positive or the negative sign there are two tangents for
Jany one value of m.

Ei_. 1. Find the equation of the tangents from the point {7, 9) to
the circle PO ( B

and state the coordinates of their points of contact.
The equation of any line through {7, 9y is of the form

y—9=mfx—T) or y=mx+(9—Tm). RRUPRURRIION ¢ +4]
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The abseissac of the points in which the line and civcle interscet

are given by lhe cquation
{(1+mBer?+ 29 - Tl +(9—Tm)*—13=0, .ovoorenee. (i1
and the roots of this equabion are equal if
A0 — Tm =41 +mD (9 - 7o) - 13},

that is, if 36m®— 126m 4 68=10,
that is, if m=g or .

When w2=3 equabion (ii) becomes y=31r+ %, which ix one b L;I“‘BK‘J
To find its point of contact, note that when sm=3 oquation {jii\gives

a=—= —2 twice, and then (ii) gives =3 Lwice, 20 that the pmu(. of con-
tach s { — 2, '3)

Whun ?’Jb—’%‘ the tungent is y=17 2 - 9%, and the ]Jl)l.l"lt. of tontact is
l T (") 7
ILX. 2, Zhow that y=2-1 ig a tangent to the eifcle
Bty — 8- zry—H.'J_O\“
and find the coordinates of its point of contagiy
Selving these -equatinns as ::mmltameo@ **oquatlonb, wo find for

&

the alscissae the eguation )
-he4+ 9% 0
that is, (z‘ ‘3)(1" »3) 0.

The two values of 2, and thm’efow also, sinec y=x--1, the two

values of 3, are equal. The hﬂc s thus a tangent, and {3, 2} is its
point of eontact, ¢

Ex, 3. Bhow that the’sangent al the origin to the cirele
p i:‘} P 2+ Uy 0
18 gr+fr=0, \\ ) '

Tf these equalens be solved as simultansous equations we see thab
the solutions ape =0 twice, =0 twice ; the line therefove meets the
circle in two t?ol‘nudent pmntq and is thorefore a tangent. :

EX "}‘1 nd the relation hetwoen the constants of the equalion

J 22t 2gn -+ 2y 4o =0 :
lf lvhéxr axis is a tangent to the cirele.
\ wTho circle meets the a-axis. Whl’ e
m~ \ ’ +2gz-te=0
\ Tif the wuxis is a Tangent th&. two roots of thl"i equation must be equal,
and therefore e=g®  This is the required relation, and

w4+t 295+ 2y - g4 =0
is the equ.ﬂ.tmn of a circlg which touches the x-axis at (—g, 0).
Ex. 5 Find the equationa of the tangents to the cirele
224yt -G-8y +23=:0

that are parallel to the line a#4-4=0, and gnc the coordinates of their
points of contact.
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The two tangents are
aty=5 and z+y=5,
and the points of conlact are (2, 8) and (4, 5).
Ex. 6. For what values of @ will the circle
- &gt - Bar—4=0
have the Hie o= 2y — 6 as a tangent ? . N\

The avdinaves of bhe peints of intersection are givon by the equation
(@ - 6) 37~ 2u(Zy —6)—4=0 ')
or 52— 9(2a + 12y + (120 +82)=0; ;\';}\ ”
the poivts of intersection will he coincident if this equation in g has
eoual roots, that iy if KD
(2 + 19} =5(12a+32), D
e if (@ —4)s+1)=0, or finally if g=4 or - 1. e\

"The line #=32y — 6 is therefore a tangent to ench WAEKE circles
Pyt fr—4=0, 24+ 2z &=0.
‘The points of contact are (2, 4) and { -2, E-R_"c@ ectively.

5. The Square on the Tangent from % Point. et P(ay, %)
be a given point outside the giveh circle
| P+ gk 2y =0
whose centre is O it is veijuired to find an expression for
the square of the tangent P7 trom ¥ to the circie.

/N

YENY

B

V. 43

The angle PIC (Fig. 43) is a right angle, so that
' Pr=CP—CT%
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Now :
CUFP%=square of distance between (x;, y,) and (—g, —f)
=+ g +{n+/y
=+ + 200+ 2y + ot
(T =square of radiug of circle
=g+ [ —c; A

sothat  CP'— O =ai4y 4+ 2gn 4 2y e D

Hence : the square of the tangent from (z,, y,) totle'civele '_
: a?+yt -+ 290+ 2fy+e=0 .:\
i X +y, +2e%, + Uy, +e. \«\
If a secant PAB through P cut théveirde in 4, B
(Fig, 43), then \\«

PA PRB=PT"=x 2+y1 -1—%y51+9j,:l+c

N T'1g. 44,
A
\’\:“' If P lie within the circle (Fig. 44) and a secant PA B be
/ drawn to cut the cirele in A, B, and also the chord PN
be drawn perpendicular to CP then (attending to sign)
PA . PB=PM.PN=—PM*=—(OM2. 0P
=02 —(OM? :
=@ +gP+h+/Y - (" +f2~c)
=a"+ 9"+ 292, +2fy, 4o
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When P is within the circle u2+%>+ 20,4 2fy, +¢ 1s
negative ; when P is on the circle >+ 9,2+ 2gx,+ 2 fagy - 18
zero; when P is without the eircle o7+, + 292, + 2fy,+¢
ig pogitive.

The boundary for which this important expression
vanishes separates the region in which it is positive from
the region in which it is negative. This is an example
of a general principle of sign; for instance aa,+by,dre
changes from positive to negative as (@, ¥y crosses- the’
boundary line ax+by+¢=0. "R

1f then a secant through a point P(#;, ¥,) to the cirele

22412+ Qg+ 2fy +e=0 .w,’\\
eut the cirele in A and B, the product PANFE 18 equal in
sign and magnitude to 7\

a2+ y,"+ 29, + 2fgrre’
and P4 .PR is known as the pdv}ei of the point [ with
respect to the eircle. When P, js'..outside, the power of the
point is equal to the squaresan the tangent from P; and
indeed the phrase ©square.on‘the tangent from a peint” is
commonly used instead of “the power of a point,” even

* when the point is inside the circle.

Cor. The squaréién the tangent fromn Play, y,) to the
civele Ax*+ A;a;?}éGm +2Fy+C=0 is
. 4 o p R . G ﬁ" Cf
< 3’12'1'3;'1‘4'2;{501"1‘253/1*'— .
I
Ex. ¥\ Find the syuare of the tangent from (2, 1) to a# 435 - 1=10.
FE£N\2. Tind the synare of the tangent from (1, 3) to
3 2t yti— 2w —y+1=0.

2

\ \ Tx. 3. Find the length of the tangent to the ercle

242yt~ 243y +1-0

“fyom (1, — 1) ; and show that the other point on the line a4+ +1=0,

from which a tangent to this circle has the same length, is (—2/5, —3/10).
Ex. 4. Prove that the lengths of the tangents to the two circles
i dyp+ 2 —4=0and 2* +y*— B — 4==0 from (0, b) are equal.
fix. 5. Prove that the point (1, 2} is tangentially equidistant from
the two circles
A4y+2e+3y+1=0 Attt 2p4+4=0.
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Ex. 6. Prove that all points on the j-uxis are tangentinlly equi-
distant froni
FHryt—r+4d=0 and 24321 hwd4=0,

Ex. 7. Prove that all points on the line 2444 1=0 are tangen-
tially eguidistant, from the eireles

2241 e~y +5=0 and +i B — 3y 4=0, O\

. L\
‘ : EXERCISES XVIL O

L. Find the equation of the civele which Loueles the&?f—éﬁﬁis ab the
poing {4, 0) and passes though he point (0, 2) on &R youxis. At
what other point does the civule interseot the aaxds N

2. ¥ind the cquation of the eircle which toded¥ the y-axis ab the
potnt (0, 3) aud passes tivoy oh the point (g, Bl WWhat is the equation
of the tangent at (2, 517 R 7, \d

3. What is the equation of the circle"\bﬂi\éh touches the w-axis at
the point (&, 0) and also touches the linegpes 4

4. Find ile equations of the eigdles which touch the »axis at the
point (3, 0} and akso touch the lina8y =~ 4z =12,

5. Tind the equations of v1'71:1\55: dircles which touch the eoordinate
axes and the line 3z + 4y =123

6. Jf is the projectiopdoh a point P on the line 24 13=0 aud 7 is
the point of contact AR tangent from P to the cirele P4 yt=25
it PI=4 P, find shefaduation of the locns of 7 and deaw the locus.

7. M i the projeetion of a point P on the lige rtu-0and ¥ s
the poing of cortaet of a tangent from £ (o the civelo 284y ei®
it PI=2y, {d{?’j where 2p is a givon length, find the equation of the
locus of £ afiddraw the locus,

8. Mabl ¥ are the poiuts of eontact of tangents from P to two
circles whose centres are (0, 0) and (¢, 0) and whose radii are @ aund b
respéilively ; If £ moves so that F4 is to PV as o s to b (a=Fh),
showthat the locns of #is a cirele and draw the circle,

e ;"\:"9. If the tangents from / to two concentric circles are invcrse[y
\3 ds the radil of the cireles, show that the locus of P is a concentric
\ cirele.
10. A point P moves so that the length of the tungent from it to
the cirele _ w2y - Sar 4 p=0
iz £ times the Tength of the tan gent from it to the eirela
2P p gt — She =0;
show bhat the locus of Pis a circle. Dinw the circles for the case
¢=—7,0=5 p=9 F=9 :
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11, Tind the equations of the vommon tangents $o the circles
whose equations Are

AtHyi=25, (w—12)+7=9.

12, Show that one pair of common tangents to the circles whose

equations ave (a2 > 60)
al gy — 201 =0, 2P+t — ar+ #2h=0

gons through the origin.

If these circles cub the »-axis
that 04 . OB =04". (B, where 4
the point of the second circle ucares

at A4, Band A, B respectively, shé:\}\j
i the point of the fivst circle ¥ 14
t to the erigin O, Y \/

i), cits the
é :AG and

inblon

13. The linc joining the points P(ry, ) and @z,

givcle at+gi=+% at 4 and B; show that the ratios

PB: BG are the values of the ratio m e given by &
m{ag? + g — 1) + Dy ¥y T Vi~ 72yl (-fték\!)" 1‘5“ ) =0.

If '@ is a tangent to the circle, then ’{\b’ )
(g 3z~ 7P =+’ Lo }F FyR -2

Deduce that the equation of the paiﬁ"lo}' tangents from

£
7

P to the

circle is- (e - P = L b Pyt =17,
A e
o0
Y
RN
. )
.’\'
:"\\
¢ <C\l
O
L)
O
2N
O
x;\ul
Y
\v
<\ '
D

N
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CHAPTER VLIT. S

COAXAL CIRCLES. POLE AND POLAG:

57. Radical Axzis. Definition: If a variphlé/point move
so that the squares on the tangents fromab to two circles
are equal, the locus of the point is call& Wbhe radical axis of
the circles. Note that the phrase “ gjutre on the tangent
from a point to & circle” is to be~understood in the sense

explained at the end of § 56. N\

AmmaEnuEERAkn Hv Tt

e : Haf et EH

Eri A X i TIRIT :

E?IZ— 1 1 EHD :

g;:' ' -1 LY X

&N ' : : : —

e

Fro, 45,

Let Wty £ 200 +2fy 6 =0 rreran... Lon(1)
and Py 200+ 2 Y =0 i, (2)

represent any two given cireles: it is required to find the
radical axis of the two ecircles,

Let (2, k) be a point on the radical axis.
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Then the square of the tangent from (b, k) to (1) is
e+ IE -+ 2gh 2fh +e;
and the square of the tangent from (%, &) to (2) is
B2+ e+ 20 b+ 27+ .

Therefore
}’19+k‘2+2gh+2j7c+c==h2+?r,3+ 201+ 21"k 4,
that is, 2 — g Y+ 2(f—f Vet (e—)=0. <
B 9 #
e
B EERREAEEaw=x AnmEEE
= 1‘?1_7_ -
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e
i
L

,_i_'_|

%Eh' |
ﬂﬂ:
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. N\
& ''Writing (2, ) for (&, k) to denote the coordinates of any
N\ point on the radical axis, we geb
2(g—g e+ 2 f—=f )y +{e—)=0
as the equation of the radical axis.
The radical axis is therefore a straight line perpendicular
to the line of centres.
For csample, draw the two circles

w24yt T+ 6=0 and at4yt—6x+6=0 (Fig 45). -

G.AGe b
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The radical axis is given by the equation
24yt T+ 6= 0?4 y? — 6246,
that is, ] : x=0,
Again draw the two eircles

x§+y2— 4=0, 2*4+4°~32—4=0 (Fig. 46).
-The radical axis is K '\ﬁ'\’
B4yt —d=g’y2—8x—4, \ O
that ig, x=0, N

Note. When two circles intersect their,eomimon chord is
the radical axis; hecause cach point of \infersection lies on
the radical axis, and the radical axis ¢ a straight lne.
Even when the circles do not interségh, the radical axis is
& real line and is still called the cmr'ﬁmu chord.

R

EXERGIBES XVIL
1, Prove that the radjcal Axis of the civcles
Py -8 =0 and 2%+ —By+6=0
19 the -axis, Drawhe figures,
2. Find the La\eﬁbal axis of
(i) 2 +y1Br-y+2=0 and P4yt 2y - 5=0;

(i) AAfg?—20-3y=5 and 2yt —To+ 2y —4=0;
(L) 5" — 82+2y ~4=0 and 2+ — x4y —-1=0;
() B 43"~ 40— 6y~ 1=0 and 222+ 992 — 3w — 2y — 4 =0,

"_\”If & 1s the foot of the perpendicular from any point /' o the
- qtadical axis of the twe cireles, centres 4 and B, whose equations are
e N Fryi-pi-a=0, &ty-gr-g=0,
\'"\3 prove that the difference of the sguares on the tangents from P to the
Ewo civeles is 248, NP,

4. Prove that the radical axes of three cireles, taken in pairs, are

concurrent. The point of concurrence is called the Tadical centre.

5. Prove that the three circles -

&84 a2—4=0, Fby? = P — A=), Byt Sr —4=0

alt pass through the points (0, 2) and (0, —2). Draw the vireles, and
find their eommon radical axis, -
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6. Draw the circles
gt -bedb=0, 2+t +Te+8=0, A+y-0r4+6=0.
Prove that they have a common radical axis. What two tmaginary
points on the y-axis are eommon to all the circles?

7. Draw the circles represented by the equation

_ Byt ar~4=0, Q)
for u=0, I, -2, 3, -4 Prove that they all pass through two fixad,
points, and find the coordinates of the points. : AN

A\ -

8 Draw the circles represonted by ihe equalivn

) gt — e a=0, ,~.'}‘

for ¢=8, —4, 5, — & Prove that they all pass throughmﬁ\'u’ﬁxed
(imaginary) points, and find the coordinates of tha pointa'\'\

N

9, Draw the system of cireles 1‘ep1‘escnted by the €yuation
#* 1yt~ b — 6+ E(PE Y+ -6)30)
for varying values of the constant £ . Prove th&;t\t]fey all go through
the points of intersection of ’\ ’
wippt-br—8=0 and FAEFyrr-6=0.
What line is their common radical axls A )
10. Draw the system of eircles ;‘ep};e’sented by the eguation
Ay - da B2+t 20) =0,
choosing various values of the constant & What line is the common
radical axis of the system ?\
11. Draw the systm{hf’circ]es represented by the eguation
HAF i 9o +8 +E{xt 438+ 64+ 8)=0,
choosing various, valhics of the eonstant E. Through what two fixed
(imaginary) peints do all the circles pass? What line is the common
radical a;xisk"'

e _
58, \Coaxal Circles. A system of circles, every nember
of whith passes through two fixed points, is called a coaxal
systém of circles. The line joining the two fixed points is
~\bhe radiesl axis of every pair of the circles.
N/ 1 The equation
P itm ad—b=0, ereriiinins o)

where b is a fixed constant and @ a varying constant or
parameter (§38) represents a system of coaxal -cireles,
which all pass through the two fixed points (0, Jb) and
(0, —/b). These points arc real and distinc i bisa
positive number; they are real and colneident if b is zero;



130 ANALYTICAL GEOMETRY, e vur

they are imaginary if b is negative. The commnon radical
axis is the y-axis.

Tig. 47 represents the system for the case in which b=9
and @ has the values 0, 2, —4 6, —T.

A

=t ]
H in)
=i = L

=i
V4

AT

iR

=
=l L
V4

172

=i

e
T

SRl

]

T
I
.3

i

Fie, 47.%

'Fig. 48 represents the systqif;:for the cascin which b= —4
and ¢ has the values 5, 6,098, —5, —6, —7, —8,

[

e
H

T
=
iy Ry Kl e EERE T
- 1 '5'$f7
faradli

'\% %; -_..
- ek ; -!_-_Iii 3 |:|:l|
Fia. 4%, .
fvr}fti?;l 5 s negative, say b= —¢, equation (1) may hbe
(€—30)24 y? = "’47 S @

When ¢=2¢ the radius of the cirelo is zero; the circle
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has become the poiat (¢, 0). Similarly, when a= —2¢ the
circle reduces to the point (—¢, 0). These two points
(e, 0), (—c, 0) are called the limiting points of the system of
conxal cireles given by (I) when b is negalive and equal to
—¢%  The points (2, 0), (=2, 0) are the limiting ponts of
the system represented in Fig. 48. Evidently the limiting
points of the system given by equation (1) are real when,
and only when, b is negative. : O\

1. The equation _ O

Ay 2gm 4 By o+ B (2t 2+ 2 Y + RO,
where % is a varying constant and g, f, ¢, ¢ %) ¢ fixed
constants, represents a system of coaxal eireigs'which pass
through the fixed points in which the fixed\civtles

22yt Bga+ 2y +o=0, @+ yP+2FF 2 Y+ =0

7

intersect. (Compare § 38.) )

X

Ex. 1. The equation &®+ 4% —ar — 4=0 gepresents a system of conxal
circles; find the equation of the cirelg ‘of the system which passes

through the peoint (1, 2). A\
Ex. 2. Fiod the equation of ¢he tircle coaxal with
.7,"2—!-'_1,!2—73:—{—12:.:()" and a4t 82 412=0
which passes through the, }i}int {(—2,3).
Ex. 3. The equatido™ et #—ar—9=0 represents a system of

conxal circles ; find the equations of the civeles of the system which
touch the lina .1::?-.3%:11.

Ex. 4. Fipd\th’é sguation of the circle coaxal with
.g;{+§,2_9$-|-2y+1:0 and 2% 4+3%+8r -8y =0
which a:%ﬁq through (=1, — 2),
Ex\')}: Find the equations of the circles coaxal with
) \‘ Ny 24y~ Br+4=0 and a?+zF+0x+4=0
"‘\} which touch the line 3z — 4y =15,
N 59. Orthogonal Circles. Let P be any point on a eirele,
centre .4 (Fig. 49), and let B be any point on the tangent
at P. With B as eenfre and radius EP deseribe a sceond
cirele. The radil 42, BP to the point of intersection of
the eircles are at right angles; the two circles are said to
cut orthogonally at .
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If @ denote the distance A B between the centres 4 and B
of two orthogonal circles of radii o and b, then clearly
' =12,
and conversely.

Let :c9+y?+29m+2fy +e =0. A
and - w4 %4 29+ 2y 4’ =0 .
 be two circles; it is required to find the condition t.l‘}@"ﬂfley
be orthogonal eircles, O
Let d=distance between centres, AN\
» @*=square of radins of first circle, O °
» B*=square of radius of second Cil‘ClE!:"\'\\’
: 7N\

*

.C} F1e. 49,
( Now the poordinates of the centres are (—g, —f) and
~q, — f’)‘{.f:)

Hence::;\" Lﬁzzw—g’)2+(__f—f')g.
Alse,C =gt s,
andh” B =g fy
"\‘?57.[‘}10 condition that the circles be orthogonal is
,.\: W - (’.‘?,22@24_62,
N st is ggogry HI=F Y=gt fimetgripr_y
or ' 290 +2f" = ¢

Ex 1. Prove tha,t-_ the eircles
" xi+yt=4  and 224tk -
are Ul’thogona,l_ 4= ¥ '+ 4 =0
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Ex. 2. Prove that the cireles

221t =4 and W4yt —awtd-=0
are orthogonal.

_ Ex, 8. Prove that every cirele through the points (2, 0) and (-2, 0)
iz orthogonal to every circls of the syster 27 42— ax3-4=0.

_LEx. 4. Prove that the eircle 2%+ 4® —gw+ 82=0 is orthogonal to the N\
cirele through the points (5, 0), (=5, 0), (0, o).

A s
Ex, 5. [ind the equation of the circle orthogonal to the two circleg \Jy

R4y —0r+14=0, a4+ 152+ 14=0, O
and passing through the point (2, 5). (u'f'&
Ex. 6. Give geometrical solutions of the questions in Exs/5,
- Ex. 7. Prove that every circle of the system 4 ,"\\\'
Lyt et d2=0 i
is orthogonal to each circle of the aystem .'\\';

at4y? - 2by - di=0, _
where @ and b are varyving eonstants. D;'a,{y"iiia.gmms of the two -
systems referred to the same axes, i
. o
60. Inverse Points. Definitiomy If O is the centre of a
circle of radius r, and P and‘E:“two points lying on a line

”a P

Wee, 60,

through O ‘such that OP.O0P'=r1% then P and P’ are called
inverse points with respect to the circle. The constant
OP. OF is sometimes calied the constant of inversion.
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P, P’ are inverse points with respect to a civele, radius
7, Whose centre is the origin, and (z, %) are the coordinates
of P; to find the coordinates (&, y') of I

Let 3, M be the projections of P, P’ on X'0X (Tig. 50),

oM 0P OP.OF

' el il N\
Then OM 0P~ 0F* _
But OM' =w', OM ==, OP.OF =42 OP?=42 +12 Dy

A\

: , & P W\
Therefore 2= W or = B N
Similarly, y_ar _or_or.or __ v

y MNP OPFT T o PR W

or 4 = —— N\
YERY R
We may also show that PAY
2., L ¥ 2,7
TER \ oy
T N i
w;z _I__y-’g :'s; 3 J $4+yj

If P (2, y)and P (2,4 aré inverse points with respect
to the circle 2N Lo .
_ uf:-*-l\-\y + 202+ 2fy L o=0,
then 7%= g%4:f2 — o{ Bs the point (—g, — F), and
OM =2t (" OM =249, OP2= (4 g+ (y-+F),
so that P gy Prfiee ¥ +f

NS —— —
»

SO TR Gy

N\V .
Exl.) Find the comdinates of Lhe point inverse to (2, 3) with
res to aipA=1, S

oQEx. 20 T a point P otrace out the straight line =2, find the
o \ec[ua,tlm} of the locus traced ount by 77, the inverss of 7 with respect
\"\ %o the circle a4 y2e1. . :

Ex. 3. If a point P trace ont thel\"ﬁtraight line w=q, find the
equation of the locus of P, the inverse ofy 2 with respect to o2+ 37 =4

Bx. 4. If a point P trace out the circle \whose equation is

. g Qe 0,
find the equation of the locus of 77, the invorsy of /2 with respect to
@i +yi<g,
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Ex. 5. If a point P trace out the cirele #?+32— dr+3=0, find the
locus of I*, the inverse of P with respect bo the cirele #*+ ?/2—12

Ex. 6. If P, P’ are inverse pan& with reaﬁ)ect to a cirele, prove
that cvery eir cle through £” and 2 is orthogonal to the given circle.

Ex. 7. 1if u puint P trace out the circle

(- ay+yp=r2
prove that the inverse of P with respoet to the circle 2?4 3%=k traces, \’
out the circlo 2k L— N
RS SN - O
SIS N
* 4 <

61. Pole and Polar. Definition. The perpend;{uwlar tn the
line OP through P, the inverse of P with{ tespect to a
circle, centre O, is caJled the polar of P witli\respect to the
circle. INY

Let P (Fig. 50, p. 188) e the point&#;, v); to find the
equation of the po]ar of P with reppect to the circle whose

equation is By
The gradient of O (where O 18 the origin) i 15
Hence the gradient of the polar- Y

The coordinates OE"R’ the inverse ol P, are
3

\\ e 7y,
O 9;12-|_ ylz, r812_|_y12‘
Hence the ’f@l"a;r of (@, 4} 1s the line thro:;gh
\\( ) Y, ) of gradient ——2
\ @5+ ﬂi @ity 1/1
Therefore the equation of the polar is

'"\:".}’ ) g 9"1( 7, ),
. R M Y
that 1s @, + Yy, = iyt + Yy _
: ’ ! gt '3)"10 .2+
or xx, + ¥y, =1
The point P(x,, %,) is called the pole of the line
2w + Yy =7

AL 2
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Similarly, it niy be shown that the polar of (=, y)
with respect to a2yt 202+ Oy + ¢ 0
is W F Yt @ o)+ Y +y)+e=0.

It is important to notice that if (21, gy} les without s
circle, its polar is the chord of contact of the taugent\
drawn from the point to the cirele; QR in Wig. 50 is the
polar of P _ <\

Hence, if (z,, y,) lies without the cirele O

a)‘.a_{_,yz — .?,.2, £ N

the equation of the chord of contact of tan gents f\féﬁm (rf.r?-l, ¥p)i8
' iy + 14 =% QO -
if (2, ,) les without the circle \
AN\
- Pty 24 2y +£20,
the cquation of the chord of eontagt ik
iyt Yy g@ta) £/ + g+ e =0,

62. The Polar as a Locus.s\let any secant of the circle
2%+ y? =72 through the point P(x,, u,) meet tho eircle in
4 and B, and let the fangents at 4 and B meet in G; to

Q prove that the locus of () is
) the polar of P.

Let @ be the point (b, 1)
(Fig. 51),

Then 4B is the chord of
contaet of tangents from

(h, k).
Therefore the equation
of AR is
R\ xh oyl =2,

_Buat Pz, ) lies on this
line ; therefore

- | Fie 5L ' haty + oy, =42,
Writing w, y for h, k& to denote a variable point @, we geb
) . . Ty Fyyy =2
8 the equation of the loeus of ),
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But this is the equation of the polar of P.

Hence the locus of § is the polar of F.

In Chapter XXIL the polar is discussed from a different
point of view by methods which are applicable to the eirele.
See also Exercises XVIIL, Example 41.

63. Reciprocal Property of Pole and Polar, THEOREM. If \
@ point A lies on the polar of B with respect to o cireley’
then B lies on the polar of A (Ihg. 52). o\ e

N/

O
‘\'\s.l
A\

<"
_Draw\xrig}zzangwﬂar axes of reference X'0X, Y'0Y through
0. thevcentre of the circle. Let o be the radius of the
_ ciggle. " Let the ccordinates of A and B, referred to the
Janes, be (2, y,) and (s, y,) respectively.
“\\’ Then the polar of B is the line
T ®Ly+ YYo= 1%
But 4 (z,, ,) lies on the polar of B; _
thercfore 810 Y1 Yo == T wnivanenran (1)
Now the polar of 4 is the line

w2y + Y ="
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Hence B(z,, ;) lics on the polar of 4 if
Loy F Yy =77

* and this is true by (1). Hence the thearem is established,

Points such that the polar of each passes through the
other are ealled conjugate points; the polars are calleg,
conjugate lines, .

AW,

Ex. 1. Find the equation of the polar of (2, 5) with respept@?ft]::&
eirele 2?4 42=1, « \

Ex. 2. Find the equation of the polar of {0, 6) with J;r_‘.’sfieet- to ths
cirele 4% 9% -~ dp 9y = 4 N

Ex. 3. Tangents to the cirels 2B 4t=4 are r]raa}\r.\at the paints
whers the circle moets the e “+y=1. Finf\wic coordinates of
their point of interseetion, \

Bx. 4. Tind the eguation of the ¢hord of,ciﬁm\tﬁct of tangents dvawn
frem (2, 1) to the cirele 421 ¥+2r4By=4 ¥

Ex. 5. From Ple, y)and LGRS afe drawn perpendiculas 22,
GV to the 5)_01&1’3 of ¢ and P with Lespect to the circle #2432 =s?;
prove that 0/ P] =00/QN, ¢ Leiggthe oripin.

Ex. 8. Find the coordinates of the point of interscetion of the
polars of (3, 2) with respect bonthe circles

By~ T+ 10=0° and Aty e [0=0),
Ex. 7. If Pis the poiaby(1,
of £ with respect to theyircles
g0 +12=0 and 434504 74 12=0,

prove that the gircle on PG as dizsmeter is orthogonal to the two
given circles. o\

7y and @ the interscction of the polars

Ex. 8. BYowé that the [polars of (x), ¥
)

with respect to the system
of coaxal Gintles specified % P e
'"\QO N

y the equation
e I T e=0,
eonstant, all' pass through the fixed intersection
Fotyn+e=0 and g1 a =0

wh t’gx"is a varying
of ‘the liney

.'\

e

: EXERCISES XVIIL

L I¢ ;g:mx+91§ touchey #4-28=4 find the values of m and
illustrate by 5 figure. :

2, Prove that Ar4+5y =24 touches =y i -
ordinates of tle point of ‘éontact; i » and find the co

3. Find the equation of the I i 2 gyl
o P D).q .on 0b the line which toughes 7ty =8z + 8y



»
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4 Find the coordinates of the points at which the straight line
=2+ 2uuts af4yf=2(x+4} Find also the equations of the tangents
at these points and the eoordinates of their point of intersection.

5. Find the equations of the stvaight lines parallel to a+x=0
which touch % +3%=8 Illuslrate by a figure.

6, Prove that
#+1=0, y=5 3de+dy=11, Jy=4r+7

arc the four common tangents to the circles K¢ M\
a4yt —8y+15=0 O\
and #4954 By~ 4y +11=0. s

7. Show that the angle botween the tangents dl‘a.\\'n~,frn;i}‘li the
point (3, 4) to the cirele 42437 — 2w — 4y +4=01s cos 1§ LU
Also show that y—weotdp=2+tan Ll touches thi¥ direle for all
valaes of ¢. 2
8. ¥ind the equation of the eomon chord of; bﬁe’ cireles
' (r—-af+yi=al; ¢‘+(3;—f;)2}2)9
Also find the length of the eommon chofdy¥nd show that the circle
described on the commnon chord as diaméter”is

(@4 B+ y) 20 (b + ay).
9, Prove that the length of ‘t'h:é:cbwmmon chord of the two cireles
224yt —2pr +52=0 and  aPty’—2gy~ =0
is L aESEE )

4

10. The straight 1{1} 97—y =2 meets the lines y=x and y=2x
in Pand @. TFindshe'equation of the circle on P as diameter.

11, The equation” av+by=¢ represents u line which cuts the
civele a2+32=92Gn A and B. Prove that the coordinates of the
middle poinoL 3 are oo 4-05), bef(ut -+ B8),

12, S\ihé)"W’that x=acos 8, g=asin § ave the coordinates of a point
on bhe,c\ dle %+ yi=al for every value of .

Ti fhe extremities of a chord of the cirele are (acos §, zs8in §) and
{u Ebg’q’;, a sin ¢}, prove that the equation of the chord is

A 6+ . B+ -4,
) xcos—2—q‘—)+ysm—2-¢=a cos—gj i

and deduce the equation of the tangent at the first point.

13. Find the equation of that chord of the circle 22+ y2=8 which
is bisected at the peint (-1, 2).

14. Tangents 7P and 7@ are drawn from Tz, #,) to the circle
#i+yi=¢?; find the cquation of the circle circumscribing -the
triangle 7'Pg. ’
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15. Trace the loc whose equations are
2rty=3; al4yt=2; (r_g), (y—1p=1.
Find the two poinbs ecomnion to the three logi, -
18. Find the syuare of the tan gent from (=, 7)) ta the civole
A+ 20434 c= 0
17. The square of the tangent from P to the cirele 2R Bt 4 =00
ir minug the square of the distance from £ to the point (2, 0} ; prove
that 2 moves on 1 eircle whose centre biscets the line drawn fro r'n\t‘i@
given point to the centre of the given cirele, N\
18. 4 and B are the centres of the circles g >
Tyt Speylt—g N A RN Y K N
A point P moves so thag the ratio of the sf.luar_ea of £he tunrents
from it to those circles s m{n; prove that it dezerthedha tirels whose
ventve C'divides 44 so that 4 CIBC =, \/
19, Prove that the equation RS
.x"‘+y2+2g(v+2}‘3-}-0-}-‘%‘((.?:—1—1};‘1}’:—[\&):0
represents a circle through the points of j 11§el'}ection of
o 4 T4 2e 42y + om0 and\¥e + oy =0
for all values of % : \ o

The lina 2=2 cuts the airele m“;}—;y?:g ind, B; find the equation
of the circle described on A8 as diameter,

20. I io+my+0=0isa tangdhs to the vircle
' FAEIN Qyron 4 2y 1 e=0,
then it is 2 tangent o t!m\&ircle

R4 4\27\;+ 2yt h(lnt "y +ny=0
for every value ofi . N

21. If §= .’c"-’:l:jgf?%—?gr-.‘-%{y-{-c and w=lrtmydn, ‘interpl‘et- the
equation S+ iy 0 with Tespect to the civcle §=0 and the Nne w=0.

If w=0 C]{S“S;'O indand B find the value of % when 84 ku—0
repi’esentsg\i;}{ Yeivele on AR ag diameter.

22. ¥\dand B e conjugate points witl
that.thigsquare 01 Al 13 equal to the 31
tangents from 4 and B to the eirele,

& 23, If A and B are conjugnte points with vespect to a cirele, prove
‘that the circle on 4 2 oq diameter cuts the given circle orthogonally.

M. Find the equation of the cirele sssing through (1. 2} and
orbhr)g(_mal to the cireles P g gh (1, 2)

:z‘2+:a/2—;'3x+4=0, £r2+y2+8.1'+4=0.

25. Prove that avery cirele through the points (3, 0), (-3, 0) is
ogthu_ onal to all the circles of the system specified by the equation
Ty — k1 8= 0, where £ is the Parameter of the s¥stemn.

respect to a circle, provoe
m of ‘the sfuares on the
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26, Prove thal (A, 0) and (-5, 0} are inverse points with respeet to
all the cireles of the system af4y?—ke+0'=0; where & 1s the
paranieter. '

297, Wind the equation of the ecircle passing through the point
(~1, 2) and orthogonal o the eircles )

2By —4=0 and a?4yt-3y—4=0.

28, Let af+yt—mr—b=0 and a4y —an—5=0 repregent two
cireles.  Hhow (1) that a cirele can e doeseribed passing throug}k\\
(%, 2} and orthogonal to the two given cireles, and (2) that fae™
tivelos van be deseribed tonching the line Zu -y +7» =0 and orthoguual

. to the two given circles. Tind the equation of the circle ingl}, and
alge the equations of the two cireles in (2). N, 3
90, If (&, &) is the inverse of (4, k) with respect to theleitéle
{e— 1R+ {y-2F=h, R\
rove ihat A = AL RBR -4k 2AY 4 20 < MR- Bh
P Sl P Ny oy S L Ry T R
30. Prove that the points (k, £y and (&, Kp% here
. vtk —a) 2E=b)
K=ot =y (- b7 N
are always inverse to each othor withvrespect to a fixed circle, and
Bnd its equation. &Y
31. Tind the fengtl of the Jetst chord of the circle
@ Lpf pogw + Uy e =0
which passes through al}ifh}ernal point ey, 7k

22, If ao=2-y— ]\\,8%::,'-—?/—9, yzrty—3, §=wxiy—4, prove
that o3 +35=0 is'a vircle passing througl the intérsections of w=0
and y=0, x=0 andd=1, B=0uand y=0, B=0and é=0.

33 If w= Q..&::-y—i-& F = Ok 3y — 29, y=a—dp+14, S=atdyt
prove that &8 y8 i the equation of the circle cireumseribing the
quadrila\me' Avhose sides, talen in order, are o=0, y=0, B=0,6=0.
C 34 (Po ve that eonstants p, ¢ can be so chosen that the equation

N by eo)agr by o)+ p(agz by T ezt by o)

) gl +by e ar+ by +egp=0
\ thail represent the circle efrcumseribing the triangle whose sides are
a@ by o =0, aptbyt+e=0, &zt by + ;=01
Prove that
(e — 2 -2 (e +2)+g(e+ ) (2w + 3y +3)
o (Qa By 3Y(Ber - 2y — 3)=0
is the equation of the cireumcirele of the triangle whose sides are
2x+3y+3=0, Ba-Zy-3-10 T4 2y=0,
if p=8, g=-1, v~ -5

and A =¥
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35. If §=0and §'=0 be the equations of two circles, interprey the
equation §—£8 =0, where £ is a constant.
©If a line meet S=0 in P and €, &=0 in  and ¢, and
S-£8=0 in £, show that Kf’, 8G: AP . RG is constant for all
positions of the line.
36, The tangents from two fixed points to a variable circle are of
given lengths ; show that the cirele passes through two fixed points!

87, The equation of the circle whose diameter is the line j oyiiug
the points in which Iz +my=1 cuts 4 ™
2o + ")+ B+ 2y +0=0 Py
is a(B+m) @+ — 2al+ flm— g N
— 2+ gl — fi2y 4+ Ba+ 290+ QTQ'& E(P+m”) =0
38. Trove that the circumcirele of the triangle Mrined by the lines
beteyta=0, crtay+b=0, ax POt e=0
passes throngh the origin if IR
(B )+ Y+ 5= aba (b ABY T+ a)at b).
39, If Pl 1) is & point within the ‘cfircie
22t 2 +2hrt e =0,
and AB a chord of ihe circle pa,ssing"through P such that 4 P=9PB
find the length of A B, [¢ d}’j}?ﬁ’: mfn, find the length of 4 B. ’

40. Through the poiut R{M) is drawn 2 line of gradient 1 to
Teet the cirele 224 g% — 9pa, 4y=01iu 4 and B ; find the lengths of 7’4
and P8, using the equation
(8 )foos O=(y —#1)fsin O=r.
"!}241.2 Th:n.ugh t‘he\;}int A2, 1) is drawn a line to meet the cirdle
+¥'=a® in Rand ¢, and to meet the polar of A in B ; prove that
10 O VAP41/4Q=9i AR,
18t 1s, praye that 2 is the harmonic coni i
: 4 ¢ * conjugate of 4 with respect to
E]g:le pt}%f:;s) £ and § in which any socant through 4 meets th;pcil‘de-
2[’E(fs!a the equation (11— x,)/eos #=(y —#,Ysin 8=r]
N 2. Through the point (3, 4) is deawn a chord of the cirele
~\J that the of 284 =225,
;80 thal oIV int 1 -' i i
\ Squation (?fci’:.li]‘ :l;hp(’;::{ltm 2 pump of trizection of the chord ; find the

4‘3. ].H['OLI“'h t.he point A(] 1 are dia.“'n tt
- 1 2 4 ) . .
. D b e iWO Chordﬂ Of t}he
.31'.[0‘9 it K 10 'i].l.;-ch EI._ e t' .Itl.sec_ ted at .A. H ﬁnd the equa-tions 0:[ t'he
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64 The Couchoid of Nicomedes. Jot 0 (Figl 53) be a
{ixed point (called the pole) and AB a fixéd straight line
(called the directrix); let OPQ be a vafiable line cutting
AB in Q and let the distance QF (me,ak\m'\éd eithor way) be
constant., The locus of P is calié the Conchoid of

Nicomedes. o\

Fia. 53 {a)

Let X'OX be drawn perpendicular to AB, meeting
AR in C; let X'0X, YOY be rectangular axes and let
00 =g, PQ=0. .

To find the equation of the conchoid. :

Let (2, y) be the coordinates of any position of P, and let
MP be the ordinate of P,
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The triangles 0CQ, OMP are similar ; therefore
' Q- up OQ _y
o0~ om ° %

so that CQH-—--, and therefore the coordinates of

(o).

WOom

Are s

) ‘o”\'s
‘\’\ o
P .

A Fra. 53 (3, ) . Fra, 53 (¢)
A\
”\ The deﬁnmg property of the conchoid is
Pep=p2
Hence (Z—cp+ ( ¥ — ) =t

which redyees to

(:L""Hr)(w—c ¥ = bt

This is the equation of t]e conchoid,
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The curve has three forms according as (1) b < ¢ (Fig.
53(u)), (2)b=c (Fig. 53 (b)), B)b > ¢ (Fig. 53 (0) ). A point
0, n line 4B, and a length (or parameter) b being chosen, the
locus may be roughly sketched by hand, as & circle may be
roughly drawn by hand instead of with & pair of compasses.

The locus may be mechanically described, as a eircle s, A
deseribed with & pair of compasses, with the instrument
sketched in Fig. 54 The fixed point - ] O
() is a pin projecting from a small (o § o\
wooden board : the variable line O£Q
is & slob cut in a thin slip of wood,
resting on the board so that the slip
is movable about O in such a way °
that @, a pin fixed on the under gide
of the slip, moves up and down 4B,
a straight groove cut in the board, £ ¥
while P, another fixed pin or pentils)
point, traces out the conchoid on blae
board. : N

65. Geometrical Problems., (Fije Con-
choid of Nicomedes may™he used to
solve problems, just af the straight
line and circle (ru]gr"}nd COLOPAsses)
are used. Just adingsay, with centre
0 and radius Pdeéscribe a eircle, 80
we say withppole O, dircetrix AB
and pm‘arpete\r b, deseribo a conchoid.
Problerng/ pequiring the use of the
straighit ine and eirele only are called
Finelidean problems ; problems requir- | ° ]
inthe mse of other loci, such ' as Fre. 55,

~(the conchoid, are called Geometrical
) Problems. Indeed, loci like the conchoid were invented to
solve problems beyond the power of the straight line and
_cirele, such as that of trisecting an angle and that of finding
two mean preportionals or duplicating the cube.

66, Trisection of an Angle. Let ABC (Fig. 55) be a right-

angled triangle having B a right angle. Describe a conchoid
having A as pole, BC as directrix and 24C as parameter.
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Let a parallel to 48 through €' meet the conchoid in E.
Then AF trisects the angle BAC!

c \E
G
O\
F. (NS °
A B N
Fie. 55. o\

Proof. Let AE ecut BC in

F, and lef\G l;e the middle
A

Then, since ECF is a right angle gm\:d BG= GF,

point of EF,
B
3 Q "‘“ ) '
Y 3

T1e. 56,

t.
OP=RQ. The locus of Pj

- point on the

CFo=6E=0F,
b
N EF= parameter of eonchoid
) =240,
therefore C4=0G=0R,

and
CAF=08F=20RF=2rin
%0 that A X triseets angle BAC.

67. The Cissoid of Diocles. Tet
X'0X, Y0y (Fig. 56) be rect-
angular axes. Tet A be a fixed
w-axis, and let
0d =g, Describe the circle on .
0A as diametep; through A
draw the perpendicular to 04.
Let @ bt? a variable point on this
perpendicular, Join 0Q cutting
he circle in ‘p and cut off
5 called the Cigsoid of Diocles,
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1o find the equation of the Cissoid.

Let the coordinates of P be (z, y) and let MP be the
ordinate of P. ' .

4Q_NP _ AQ_y
Ahen oA=oH " o o
and therefore : AQzﬁg. ........................... (11
22 a2{adt a2 AN
But OQ2=OA2+AQ2=@2+“$7§’ =2 (Wi—;"_y ); O
fZ N
therefore 0Q= AVETY o (2)
@ ¢
! \\

Now 0Q.RQ=AQ% and therefore 0Q3 OP:AQ&
Henee, by (1) and (2), since OF = (@* .“b'ﬂ?)’

(et — . 2426
g, .{,‘-|_-_‘__'ng+yg___a.._ ,
@ o\
that is, a(2?+ 4B =0y’
g ,’.};' 2 @5
or WY Tz

This is the equation(df the Cissoid. The locus may be
roughly sketched by-isnd; its form is shown in the figure.

68. The Dup].icét}on of the Oube. Let d denote the edge
of a cube; it dg)required to construet geometrically @, so
that d,3=20%  This is the problem known as the dupliea-

" ion of the-tube. In Fig. 56, let B be the point on oY
wuch tiat-OB =204, and let AB cut the Cissod in P

Thés}"from the equation

s 2
~O Y=az
A, oM oM
we h&ve Mp—m—:m—ﬂi SIERLIXEERERRY (1)
But, by similar As MAP, OAB,
M4_04_1
MP OB ¥

and therefore MA=3MP.
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‘Substitute in (1y;

then - MP&:%% or  MPS=o0ips

Now construct d,.so0 §

hat

OM:MP=d:d,.

Then

=22

AN ¢
(NN

69. The Witch of Agnesi. Let X'0X , Y'OY (Figs7) be
rectangular axes, 4 a fixed point on X'0X, B the, middle

\ c
"\

* > Fiz. 57,
ReN
A\therefore

From similgy triangle,

therefore

N
No

point of 2" CD the
parallel dbvough £ o
YOVt Q be o vari-
able ROt on O and Jet
0 ‘;%eet the cirele on

as diameter in Z,
Lt the parallel 10 0X

N through “ @ meet  the

parallel to OF throngh

R in P The Jocus of

P ig called the Witel of
Fnesi,

To find the -Cquabion
of the Witch.

Let 04 =2¢a; let P be
the point (z, %) and 3
the ordinate of P,

Yom similar friangloes
OMR, ORA, '

_Ofﬂ _ O
: 04~ 0OR’
OR'=04 .00 <20, (1)
s 0BQ, OMR,
99 _0R
UGB~ 0Jp
O@ (Opa

0BG
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0 2az
i

D

or 0= e, @)

that is, by (1),

. @
‘But ()sz_ OB+ BQP=082+ WP =a’+ 42,
thor f o b - g2 3 Deg® _ .’\:\
herefore, by (2), a4yt = i 8
or o4y =207 ¢ ~\

This is the equation of the Witch. The h{m of the
curve i1s shown in the figure.

[y Py A T LI HER T3
e e St ARCHEROBRPES 5t
-l o ! ! :' 3 '.
s T v _ ZANNEEEES
- -y i [~
¥ B 5
LAl P B
. -
THAs
L4 ; i
«_-\\ iy T
' 3 T ]
B T
NS O __‘;| -
: ” I
N I
; T F
T O
i oy i
i T
NH=
[ L T
! I
. — :
. - ST
9 : e
= 1T . P I W e ™
: ] - I ]
- T . n
Fic. 55,

70. The Parahola. Let 8 (Fig. 58) be a fixed point, called
the focus, Z°7 a fixed straight linc, called the directrix;
let P be a variable point which moves so that its distance
from & is numerically equal to its. (perpendicular) distance
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from Z'Z; the locus of P is called a Parabola. The form of
the curve is shown in Fig: 58 when § is the point (1, 0)
and ZZ the line = —1 referred to the axes X'0X, Y'0Y.
It was obtained by describing circles with S as centre
and radii 10, 11, 12, 13... divisions in length to eut
successively the vertical lines from O to the right; eg. the

_ point P on the curve is such that radiug SP=15 divigtons

B
3

7 %

"\.

PPN

m length= PM, the perpendicular from P to the dirgettix.
The. point O is called the vertex and the line OX thé axis
of the parahbola. N

To find the equation of the parabola in Fig: b8 Let
P (%, y) be any point on the curve. ~N

Then =~ - SPE=PMz; -
therefore (B 12+ 42 =(z+1 )2\3} ’
that is, _ 4= )

is the equation of the parabolah

Ex 1. Find the equatioméf;f,ﬁe parabola whose focus is the point
(¢, 0) and whose directrizg i®™he line #= - g P

Ex. 2. Tind the egfation of the parabol
{2, 0) and whose dire%t‘llgx_ is the g-&xlis.

Ex. 3. Find t’ﬁa\equation of the parabola whose £ i int
(0, ) and whaseydirectrix is the liue%?: —a. W s foous Is the poin

Ex. 4 XPind the equation of the rabola wh i int
(21 guq.w‘hose directrix ig 31:+4y£?’1. Those Toous fo the poin

:"\‘.

a whose focus is the point

s’%\l’: The Ellipse. Let S and & be t f . .
oPhane (called the foei) and let, a v, e ed points in 2
‘Plane move so that

b, riable point P in the
e _PS+ 'PS 18 constant; then the loeus
o 18 called an ellipse with foci 8, & The locus may be
;necha?mally described by passing an endless string ronnd
sg;)ﬂpl:ﬁ&,}placed ab the foei 8, &, and then keepb:ing the
st t% . 11%;{3 1‘1';&1)3? & pencil moving in the plane and tracing
Fig. 59 shows the form of i} i i
aro. the yetm e o g’ 0)1:'; neéhpse when the foci 8, §

; PS4 PR =
To find the equation of this ellipse, =~ > =
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Let P(z, %) be any point on the locus; thew
PO TP, SP=VEEYT
therefore L 2R+ = 2P+t =55
VI =5+
Squaring, we obtain _
(1427 =35+ (o 2P +y =108 (D

. N\
which reduces to « N
8 —23= —10J/(@x— 2P+ 3> SO
(0
e TR A e R R =
g T I o AL {5 L P HHT PR
T T I 1 - : | > =11
L I:
T |t 2o T hn
o T L 7 W [ T )
T T ] N
amaliy R - = R 1
1 | 1 | i il X o - b
L - ymaln Ran
- =il Ha
—H B s I ] BoRamm: 1]
HlH - U P R N2 ar:
N TS T 0] ! TS AT 4
ERJELS S T f H
k! N | 1
- 1 pm I e §rannd EaE
' .—FF—— ;
T TS E R e —A= T ; %_
[~ I HST I manallpvim I ;I-_I CH ja:_E
T CEF LR e PR e PP PR PO
N\Y Fia. 59,

Squ%mg a&ga;in, we geb

Lo8Y 6402 — 4004 625 = 10027 — 400z 1400410042
“N\or, 36024-100y* =225,

This is the equation of the ellipse.

AA" is called the major axis and BB the minor axis of
the eilipse; the points 4 and A’ are called the vertices of
the ollipse. '

Ex. 1. A point P moves so that the sum of its distances from the

points (2, 0) and {~2, 0) is 6 find the equation of the ellipse traced
put by 27 ; and draw the igure, o '
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Ex 2. A point P moves so that the sum of its distances from the
points (¢, 0) and { —¢, 0) is 20, where & > ¢ ; prove that the equation of
the ellipse traced out is

: 2 8 T

, @t g=t o FtE=l
where b= g% 2, '

Ex. 8. A line #¥, 7 inches long, slides with the end ¥ on tha N
z-axis and the ond X o the y-axis; P is tho point on IV, thapajs
3 inches from 3 and 4 inches from N, If a, ¥ are the coordinate’

do JBon AW ~:\
.ﬂ,—_?—()Jf, y——?()ﬂ, ]—G-f-—g-—_-]. ~

If I is b inches from M and ¢ uiches from ¥, the lenpth’ of H¥

being now {a+5) inches, then LV

7
o

2

E

—3 +
=

|

|
PO

Pt

T

|

| I T I

TITTTPT T

IENEEE N

P
i

Fy AEp
i

£
p0ry
LY

I'T

i

Py T T
IENEEFERESawi

LT

Ty TSy T T

T =L T
1
|EINEENENEFEEEEEEEEEEE]
T

_III|III|—|_I[

e.two fixed points in a
artable point P in the
PSand PY i constant ;

[FEEEERNN]
T

|[NEEEFE N

72, The Hyporbola. Lot § and S b
plane (called the foci) and let a v
plane move so that the difference of



§71-73] THE HYPERBOLA. 163

“then the locus of P is called a hyperbola with foei S, S

The locus may be mechanically described as shown in
Fig. 60. The rod &K turns about &, while a string
(whose Tength is less than that of the rod) conneeted to S
and K is kept tight by a pencil P moving in the plane
along the rod.

I § is the poinb (4, 0), & the point.(—4, 0) andy |

PS ~ PS=4, to find the equation of the locus. ) )
Let P(x, i) be any point on the locus (Fig, 60). O
SP =V — Dy SP=VEr i+, N
If PSP =4, ool (1)

N CE - IN remyy R AN
orelore N+ T =+ o= Y
Squaring and reducing, we have ’\ ¢
23— 2 =nl(w— Qq,yz
Squaring again, we geb .’3,": 3
fa? — S+ 4@ — D+
e '3“/2‘; ,L;;g 12, -

which is the cqua-tion«@% the byperbola.
The same equais'&o:(i‘il% obtained if we start from
¢ SP 8P =4 . (2)

instead of frn’:a;&i ( 1). 'The right-hand branch of the curve
correspondgto (1), and the left-hand branch to (2).

' \V .
173.,&0151'0 Sections, If a right circular cone be cub by &
plaz i
e\ (i) which is parallel to a gonerator, the gection i &
<‘§ parabola ; _

(i) which is not parallel to a generator and yeb cuts
only one sheet of the complete conical surface, the
scetion is a eircle when the planc 18 perpendicular
to the axis of the cone, and an ellipse when 1t 13
not; . :

(iii) which cuts both shects of the conical surface, the
section is a hyperbola. :

N\
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Fig. §1 helps to eiplain these statements, The parahola,
ellipse and hyperbola are often referred to as conic sections.

"scs
(2) The Parabolg. :»>$

{¢} The Hyperbola,
Fia, 61,

The definitions of pap: :
L ae 10 parabola, ellipse and hy o1
m § 70, 71, 72 do not- show the counectio?lp%ﬁ?izeﬁ \i;ﬁ]g
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curves as clearly as might be; hence the following definition,
ealled the focus and direetrix definition, is also worth noting:
Tf § is » fixed point, called the focus, and Z'Z a fixed line
called the directriz, and it M is the projection on Z'Z of a
variable point I> which moves so that SFP=e. M, then the
locus of P is called a parabola if e=1, an ellipse if ¢<(1
and a hyperbola if ¢2>1, ¢ being called the eccentricity.

% K

Fx. 1. Find the equalion of the conic section whose forus is they
point (2, 0), whose direetrix is #=4f and whose eccentricity is $o

The squation is’ (x—2) +17=1F{x— 30, g
that is, 3622 + 10032 = 225, R N

The cenic is the ellipse of § 71. &0

Ex. 2. Find the equation of the conie section wh"‘og} foens is the
point (4, 0), whose directrix is x=1 and whose eccaptricity is 2.

The equation is (o~ 4P+yi=4(z— 1)3,’,\\;
that is, 3 —yi=12. \ £
The conic is the hyperbola of § 72. N

Ex. 3. ¥ind the equations of the cmii:gjs’ections whose focus iy the
point (2, 1), whese directrix is @ —2g4-8=0 and whose eccentricitios
are (i) +; () 1 (iii) 2 RN

(i) The equation is &N
) . O 1 e — 243y
(o-oyry W=t (EZH2),

thit is, 102 £ 4% 162 — 862 — 28y + 91 =0,

{il} The egnatio 1§“
9 an g
B oreoip=(222),
) NG

that iz, 07 dat b duy 4yt~ 260+ 2y + 16 =0
(iii) Theeglation is
" ’e~\ 2=+ 3N
\v (.?:—2)2+(;§!—1)2=4( —5 )
" Ned -
that(id #4116y — 112 — 44+ 38y — 11=0.

Sk 4. Show that the general cquation of a conic section is of the
et the focus be {(p, ¢), the directrix Iz +my+n=0 and the eccen-
trieity ¢; then the equation of the conic is

Y. g (Lo + oy +a
(r-pPily—gf=e—ppr =

Squaring out, collecting like terms and rearran ging, we get an

equation which contains terms in 2% &y, 4%, @, y and an absolute term ;

the eyuation is therefore of the form

ar®+ hay 4 byt 4 2gx+ 2y +e=0.
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74. The Equation of a Locus. A geomstrical locus such
23 the straight line, circle, conchoid, cissoid, ete., is defined
by a certain eondition. A fundamental problem: i Ana-
lytical Geometry is to represent a defined geometrical loeus
by an analytical equation. This can be done in an infinite
number of ways; for rectangniar axes of reference can bes,
chosen in an infinite number of ways. If (x, %) be the

- eoordinates, with respect to chosen or assigned axes, of (b .
point on a locus, the condition defining the locus ean “be
tranglated into an equation in w, . and certain_constants
required to specily the loeus. This equation is called the
equation of the loeus, O

' 2\

75. Worked Examples. We shall now wotk 8olne examniples’
of the process of finding the anglyrtival equations of
specified locd, \ &

. . N . - 4 3
Ex. 1. I 0ds the origin of vectongllr axves and Q moves round

the eirele a3 4y2— dpg183—0 find the @ ’ .
i & . quaiion of the locus of P, the
. middle poing q?[ 09. Draw the Toci B and P, C

Lt (4, k) be the coordinates ¢B% position of P (Fig. 62).

?Egl :

N 3

_i..! H
el

II|I|||IIJi

e

A
(W

_i'_H_

ST T
|
I

NP9

T

i

are the coordinates. of the corresponding position

H_H

N/ Then (2, 2k)
of §.
Bat Q is a pei iv i
sty %he Oq]:t(::ifitg I:JII the given cirele : therefore the coordinates of Q
9-84‘:9’2—4-7-‘4-3:0; S e )
SR ORI
A AR -850,
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%2

hb

4. the coordinates of any peint on the locus of /' satisfy the
oquatin 43 4yt = BisFB=0, i (ii)
obtained by writing #, # for £,  to indicate a variable point.

Hence this is the equation of the locus of P,

We may write (i} in the form

(":“‘1 - 2)2 +."yg =1,

and (ii) in the form (x—1¥+*=0E"
Hence the Tocus of € is the civcle centre (2, 0), radius 1; and the
Toeus of £ is the circls centre (1, U}, radius & K\

Fx. 2. A varioble cirde touches the x-axis and the fired (Siyple
whose vedius @ o, and centre (0, ¢); find the eguation of the lochs Bf the
centre of the variable civele, and sketeh the form of the locus, L ™Y

Let 4 (Fig. 63} be the centre of the fixed eirele. . 0

Let (R, £) be a position of the contre of the vagiable cirele ; let
MP be the ordinate of /. /

 §

T M Y LI T [ r

= aannaaunr s
. D2l R
Baeaics A T
HESEEEER) N - }
; k. | ] .
1+ AN | _‘:‘_-_-q'%‘ /’:'_‘,a"\ N BromnpmEas
:ir_l-_ BRI E i ;Q il i 5 |I<
T f e [ - Al il T TIPS T
1= O N N I L 111 1 IENNERWN]
RS Fre. 63,
Draw 2., i:hépérpendimﬂar from P to 04,
Then (N APP=FALL NPL vormannnenas(i)
Algo ?:\'“ ~AP=gum of the radii of the Lwo circles
N\ =a+MP=atk;
A\  NA=04-0N=a-k;
o and NP=h.

\ 9 “Substituting in (1), we get
: (o EP=(u—kF+iY
which reduces to R=dak,
Writing @, % for A, % to denote a variuble point on the locus, we get
ar=day

as the equation of the loeus, the form of which is shown in the figure.
The locus is a parabola of which 0 is the vertex and GF the axis (g 70).
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. whle line passing through the point (1, 1) meets the ames:
of Ef;:n?é v ﬁzvﬁﬁﬁz N reagecta'w 3. I‘&grcgll_els through M fmd N, ’a;: the
axes of i ond & respectively, meet @ P Find the equation of the loous
of P, aud draw the Jorm of the locus. -

Lot one position of the variable line through A(1, 1) be MAN of
gradient sn (Fig. 84), and ot 2(h, £) be the corresponding point on
the locas.

R e
' S O
'N\S ¢
Then the equation of 4 ¥ iy ’
¥ 51’:' G ) R UNUNORRR @
Now ¥, whose coordinates are (%, 0), Ties on the line (i) ;
thersfore R T=m(A—1) s, (i)
Also ¥, whose c(@di‘hme& are (0, k), lies on (i);
therefore N E-1=—m, RO ORI ¢ 111
Weo wish t9\ebtaia a relation hetweey Ay & so divide (D) Ly (i),
and get W\ X 1 )
S g
thatds) T=(2—3)k—1)
of N e==h+7.

Ao & to denoto o variable point on thé locus, we find

Y ZEFY vt V)
as the equation of the Tocus, whose form is shown in Fij g. 64,
If we write equations (ii) and (i) in the form
. h=1-1/m, E=1—m,
we ree that r=1—
uztion {iv) iy th
elimination of m,

1/m, ¥=1-m are fresgom equations of the Jocus.
o, onstraing equation, obtained of course by the
The locus 15 5 byperbola (3 72),
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Tx. 4. A and A’ are the pointz (@, 0) and (—a, 0); and B and B .
wre the points {0, 1) und (0, = B).  fF & and @, varmble points dn A'A,
dinidde v exiernnlly and internally in the same ratio, and if B and
L' meet in P, find the equation of the locus of P, and sketch the locus.

Let ¢ divide A4 externally in the ratic £:1 (Fig. 65).

. e
Then : ’ ahseissa of Q=,;T+1a ;
; . alk+ 1) :
therefore - ¢ is the point ( _(kT’ 0)_ ) \:\
P\ N
P T O T g ™
- _-':5‘--— FRse
A 2 : s =
i ! el
Chl] ekl =i i
s e B g et .i HHH
EEEEEEE a2 b eHH A T T

< FIe. 66.
Also ¢ divides 4’ A\'kﬁtéfxially in the ratio £:1;

O s ,_ka—-a
therefore. o> abzcissa of ¢ = IR
and /7 ¢ is the point (_“_f ~1) o).

\WV 1
The e@aﬁion of B¢ is
L\ .

+
”(k‘l)+%= USRI

N a(E+1)
. {THe equation of B'¢ is
k1) _y_ .
\ Ex(k——l) E__L PR PPPPOPDUPPURPPRN 1 ) |
If then (p, ¢} is u poiut P on the locus, we have
pE=L_ 1 9 rom (i
. ml)—l f?’ rom {1},
(F+1y . s
and %j.(ﬁ.;_li =1 +g, . from (i)
: a
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Multiplying these equations bogether so as to elminate & wo have

2. 1- ¢
a? b#

This is an_equabion connceting p, ¢ with the constants apecifying
the loeus.  Write &, y for p, ¢, and weé obtain
: &

T \

at | fET

1
- N
<\
as the equation of the locus. A sketch of the loous is shomity, where
. @=5 b=3; the value of & for the points ¢, & in the Jdivdre 15 6
The loens is an ollipse (§ 71). \

N
Ex. 5, @ and B are variahle points on the & anlf @ awes, such that

QR subtends a right angle at the Jiwed point A (aNBY and £ s the foot

s:f the perpendienlar from the orygin to QR Fw ke equation of the

ooty of P, N

' 2, N\

' YA A©

N\ Fis. 66.

Let, PG TRig. 66) be u point e
Pl'cjecbiaﬁ%'\ é% Pon thg @ andl?;a;e;.n the loous, and 1ot 4, ' be the
Lat/Ogr=: ,

o & . ’
‘ _t'h\ﬁﬁ,,; _ gm.di_en_i'T of 4g= &ii ;i
E”\,.;gltherafore gradient of AR= 3_;3; .
;\ " Hence the equation of 47 is .
- .
y—b:—b—a(&s‘—-a). .............................. {

But X lieson 47 ; substituting #=0 ang ¥=08 in (i), we get .

OR~p~ =)
5

or 5.031‘&:‘-{—62—&.{_ ST 11
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Now, from the right-angled triangle OF¢, we geb

09 . 0= 0P
Fhat i ;;Jg;:l"ﬁ. ........................ (i)

¥rom the right-angled triangle O£, we get
: OR.ON=0I7"

: R R ) A
or _ = 7 (i\"z\\
Substituting in (i) the values of £ and OR from (iif) and (iv), we gé‘t
b(‘a’—;"éﬂ)z a?+ 52 _F.L (ﬁ'l—‘;——gﬂ‘), ) . & A :'«.
¢hat is, (B2 ) (B ) = (2 D Al ool ()

Writing %, » for &, & to denote a varfable point on 4he lgtus, we geb
() e+ =@+ )y A

" as the equation of the loens of P ¢*
Nute, From (iv), OR = (A4 £k s0 that (J;i)':ll.iﬂ}' be written
' A4 BN E=ad + PP Bl (lie} -

Equation (v) is found by eiimir:a.t-{ugm’from (iier) and (iif).

The method of solution thus congdists in first ehiousing 2 suitable
pavameter  then forming two eyuitions in A, F ¢ and finally elimi-
nating 2. The last two steps aghin 1llustrate the eonneclion between
freedom and constrainé equatidns, i

)
“EXERCISES XIX.

1, Tf 4 Le thyBxdd point (0, 2¢), and @ a variable point which
nioves aloug th®sGixis, find the equation of the locus of the middle
point of 46, -Eu\fl”d‘raw thye locus, :

9. p js@NFariable point lying within the angle X0 ; M and bl
are the p&»{cdt&ons of P on 0 and 0¥ respectively.  TF the perimeter
of Lthe ~,m§t-a.ngle OMPN is 4, find the equation of the lucus of 7, and
draw the locus, - : _
»\"3\.: 1f in Ex. 2 the area of OMPH s 1, find the eguation of the
logus of P, and sketch the locus. - :

4 0ABC is a varisble rectangle of constant peritneter 2e, and the
sides (74 and 0C lie along the axes of reference ; find the cquation of
the locus of the middle point of A€, and draw the locus when e=1.

5. A isthe fixed point (1, 1) and 4B is any line throngh it entting
the -axis in B, If AC iy %mrpendicu]ru' to AR and meets the y-axis
in (¢ find the equation of the locus of £, the middle point of HC, as
AR viries, '
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and B are any two points on the axes of 2 and ¥ Tespectively
sucl?.thita;(m +308 =y10 ; ﬁEd the equation of the locus of the middle

point of 48, and draw the locus,
7. @ is a variable point on

the circle 22 +3%=a?; QF iy drawn

parallel to the s-axis 20 that ¢P=2. TFind the equation of the locus

-of P; interpret the eqoation and draw the loens,

&

8. @is a variable pm’ﬁt on the civcle a%4-y2=9; ON and P b

drawn parallel to the a- and
MHLP=3; find the equation of the

- 8. MQ is a varisble ordinate

10. #Qi= 2 variable ordinute
drawn parallel to the y- and -

-and £2=0M, where (s the ori

F, and sketch the Joens,

y-axes respectively so that gg\?{e 2,
Iocus of P, and driaw the lopu\s. v

of the eircle 29+ 3%=1; AiMaken in

. HQ) so that HP=23¢ Find tho equabion of the logivof P and
sketch the locns,  Find also the aven enclosed by the Jgngs.

r

A ‘
of the cirele a?g-l-gﬂ‘;\u.z; {8, L] are
axes respectivalin s that MFR.-9M
zin; find the\eqmltion of the tocus of _

N

11. If O is the origin and ¢ movos rnyn}ﬁ}'w eirele
byt — 4 £ 370,

find the equation of the locus

“nearest to €. Draw the Joeus, N _

12, 4 is the fixed poing (b, 0), APQ s

civele 4% +32=02; find the equation of
the churd 2@, and drawlhe locus,

13. A variable poing\

qf’;E’, '},he point of trisection of G

u variable secant of the fixed
the locus of the middle point of

B moves 8o that its distance from the .c-axis

i nuninerically 911{.\1« t6 its distance feom the point (0, 2a); find the
It

eguation of the |

(0, 4) is nurigrical] ¥ equal to ita

equution ijﬁ the locus of P, and sketel, the lacus

15K ¥ariable point P move
(8,\0Ni# double its distance from
latus'of P, and sketeh the locus,

N916, A varigble straight line cuts XO0X, Y0¥ in P,
y 4nd moves so that the gren OPQ is constant {=
of the locus of the middle point of 7 "9, and sket

I7. A straight line PG of
axes of  and y ; find the enqu
of Pg, (ii) of each of the poin

2 of P, and sketeh the loens,
14, A varisble point P raoves so that its distance f

rom the point
distance from Lhe line =1 ; find the

s 50 that its distance from the point
the g-axis; find the equation of the

& respectively,
@%); find the eguation
c¢h the locus,

constant length 2a slides hetween the
Atlon of the Tocus (i) of the middle point

of the 1pei, b8 of trisection of Q. Sketch the forms

18, Prove that 4—
¥=1/2. Sketch the locus,

. 1g, #—2%1is the locus of 5
its distanee from (he boint (1/2, 0) ig a]

point which moves so that
Ways equal to its distance from
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19. Make a drawing of the e]lipse. whose focus I8 at the origin,
whose directrix is #—»=3 and whose ecoentricity is 1/2. Find the
equation of the curve.

20. A straight line rotates in a plane about a fixed point A, whose
enordinates with respect Lo rectangular axes O and OF in the plane
are r=c and y=>0, and cuts the axes in the variable points @ and .

A point P is taken on the line so that PQ=RA. SBhow that the N\
equation of the locus of P is the hyperbola xy=ab, and skeich the
CHTVE, ’.\‘\

21, B is a fixed point on the y-axiz such that OB=Fk C isany ©
point on the waxis, ¢0 bisects the angle BOC and meets BCinvd),
and & iz the middle point of €. Find the equation of phedlocns
of & as ¢ moves from 0 toa point A aleng GX. Draw the path on

- squarced paper, taking £ as 6 cms. and 04 as 30 ems. L&

99. A variable cirele touches the #-axis and the fix¢dcircle whose
centre 15 (0, ¢) and radius «; find the equation of\bbe locus of the
point on the variable circle which is furthest:'ﬁ\{sm (i) the ax-axis,
(ii) the y-axis ; and sketch the forms of the Jocil €

23, A fixed eircle, centre (0, &) and radifs’e,/is drawn, A variahle
circle tonches the fixed circle and the axis'ef . Find the equation of
the loeus of the centre of the variablescirele (i) when &> g, (ii) when
b=, (iii) when & < a. N

24, A variable circle is deseribéd™to. pass through the point (a, 0)
and to touch the straight line #=%. Find the equation of the locus
of the centre of the variable givcle, and sketch the locus.

25. A variable circle i{r@escribed o pass through the point {0, a)-
and touch the straight dihe’y=2. Find the equation of the loeus of
its centre, and sketeh t loens,

26. A variable.gigle is described to pass through the peint (e, 0)
and touch theMhie! #4»=0; find the equation of the locus of its
centre, and skatch the locus.

*

27. A ya‘ilﬁible cirele passes through the point (¢, ¢) and touches
the ra;\{s\ W Find the equation of the locus of its centre, and sketch
the logas .

8L fixed circle of radius e touches the w-axis ab the origin. A

syariable cirele touches the y-axis and the fixed circle; find the

\e‘quation of the locus of the centre of the variable circle, and skeich
the locus.

29, Find the cquations of the loci of the centres of the circles
which touch both the w-axis and the fixed circle 2% +3%=04% Skeich
the loei, and refer each sketeh to its corresponding equation.

30. A wariable circle touches O and the line #=a. The join
of the origin to the centre of the circle meets the circle in £ Find
the equation of the locus of P, and sketch the locus.
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3L 404", BOB are two perpendicular dinmeters of cirele whose «
centre is 0, and whese radius 1s anity. £ is a wovable point on the
cirele, A'R meets BOB in & ; and ¢ is a point on A& whese dlnsta!nce
from BOL is equal to O, . Find the equation of tle locts of (4, 4704 -
and B'OB being the »- and yaxes of reference. Trace the loeus
on squared paper, taking special cave toshow the form near tie point .
* whose abscissa, is unity.

32. A is the fixed point (@, 0); ¢ iz a variable point on the ;,f-mis,\_
and AQL a variable isosceles triangle on A¢ ay Luse, ha,\-m:_!r\_(g_f-‘ _
parallel to the line y=2  Prove that the equation of the loous if R is

. 7 — g+ Zor =gl O

Trace the curve. : \

£ o
33, £’ is the foot of the perpendicular from the aligin on to a
- movable line cutiing the axes at o and 2 so. that Ozlif-i()l)’: 1. Prove
that the locus of £ 18 specitied by the cquation O

(@t y) =y

From considarations of its geometriea] prqpe}fz},_egket-ch roughly toe
part of the curve that lies within the angla’\‘KOY.

34, OABC is o square ;. O iz a fixed\point on 04 produced. A
- variable line DPG meets AR in P and\BC in ¢ ; prove that the locus -
of the intersection of (4% and A ¢ imadtraight line.

35, A circle, deseribed with ’trl'xe'ol‘igiu 0 as eentve and radins
meets the negative part of WS axis of  in 4. £ 1s any point en
this circle, and § is 3 pointen” the ordinate of 2 such that =10
Prove that the loens of iy a circle, centrs {er, 0) and radins o, /3.

36. P is the fuot gf the perpendicular from the origin to a tangont
through the mﬂwﬁf oint @ on the circle on 04 as diameter, where .

0 is the origin and\t i the poink (22, 09 Prove that Lhe equation of |
the lacus of £ ga :

(& 9% ~ Qg (a2 + #y—abi=q, .

N\ :
le}tle ](3315 i< called the pedal of the eirele with respect to the poiut 0
OL b,

: &g}\ ‘cirele is deseribed mi (4 ae dia,mel;ei‘, where 0 is the origin
an 18 the point (%4, 0). ¢ ig auy point on the civele, £ is the
omage of § in 04, and the diamelor through R meets 0 in 7
A Prove that Ythe locus of P i givey Iy ¥ the squation
<\‘ _ Ba?m oyt Dgac (),
38, A is the point (o, 0); B ang @ aro varinh ints’ .
. arinble points on the
¥axiy such that Ber—p, Prove that the locus of th[; foot of the
perpendicnlar from Cto AR is given by .
x(.'z:?-{—y”)—a.;-f(‘;‘.xi-y)—}-az(x\-l-y):o.
39. A snd B are the o : Gk i
! A  points {2, 0) ang 0, B) respéctively. ¢ is
& mavable point in the line A8, and i aud(ﬂ-’ a[?e itaegp pmjecf-ions*)ﬁﬂ
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“the axes of = and ¥ respectively, Prove that the equation of the
Tocus of the intersection of 4NV and B4 is :

B2 + by + o - 2ubte — Dolhy + a2 =0,
Hketch the locus ' )

40. A and B ave the points {z, 0) and {0, &} rcépcctively,. and 0408
i rectangle. Through € is drawn 4 variable line to meet the axes Q.
of @ and y in ¢ and A respectively. B¢ and AR mect in P; prove
thut the cquation of the loeus of P is . '.\‘\

. B+ abay + it = ab{ b+ ay). e\

41, ¢ is the fixed point (g, b}; A and 7 are its project.ion&'éjl\ﬂm
@ and y-axes. € In 0 and R in BC are such that @& s paralled
to OB; Sin OB and T in A€ are such that 87 iz pazallel to OA.
Tf (R and 87 are movable, prove that the locus of the nbersection of
O8N and BT is the line 48, and that the locus of\ he/intersection
of Sfand @7 is the line OC, O

42, 4 is the point (3¢, 033 § is a variable poid®pn the cirele on 04
as diameter, w{]lere-() is the origin. On theNifie 0@ iz measured,
either way, a. length @F equal to 2. Broge that the locus of @
{ealled a eardioid) 15 spocified by the equaliag -

(g — 2 =4 + 7).

43, A iz the point (@, 0) and B}my point on the line s=u; the '
bisector of the angle 084 culs (diat N, and from & a perpendicolar
ir drawn to OB, meoling it at 2% Find the equation to the locus of
P as B moves along the linage=a. ) ]

If PN iz produced to teet the line w=a at @, find the equabion of
the locus of the mid%'\pemt of 2§, and show that the locus 15 a
cissoid. X : : '

NGO

~{OMISCELLANEOUS EXAMPLES I

. 1. %’0 that the points (3, 4) and (-4, 3) arc equidistant from
the er»gin. )
n "9\ Prove that the points (3, 1/2) (Pn3/2, 3), (+/3, 11j2) are the
\\’ Fices of an equilateral triangle.
8. 4, B, two points on an axiz, have abscissae (a+b), (@ — b) respec-
tively, ¢'and & are points on the axis such that
AC:O0B=q b= —-AD: DR,
prove that CD=4ab{(5*— o).
4, A, B, € are the three points (1, 4), (3, 2), (3, 11/2) respectively.
X is the middle point of 48, and A€ is produced its own length
to & ; caleulate ¥ N and the intereepts made by H .V on the axos,
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5. Prove that the points (-3, 1), (— 1, G), {—5, —4) are collinear
aud find the ratio in which the first cuts the join of the sccond
‘and third.

6. Prove that the lines jeiniog (-2, —3), (6, 5) and {1, —5), (3, 7)

- are the diagonals of a parallelogramn.
7. If (&, B), (¢, &) are opposite vertices of a parallelogram and .
- {e b) is a third vortex, find the coordinates of the fourth vertex.

8. Find the coordinates of the intersection of the medians Qf_\ﬂ&ﬁ
triangle whose vortices are (5, —1), (=3, —4), (1, 8). PP\ N
8. Find the coordivates of the centroid of the t,riaugg]é “wliose

vertices Aro (@, 71), (1 212, (¥, 9. RS

10. Prove that the Tines joining (4, 0), (— 2, 3) an{{.'— 3,9, (8, 2)
trisect one another, : O .

110-1f (-3, 2), (1, 1), (5, 7) are the middle polats’ of the sides ofa
triangle, find the coordinates of the vertices of: _Qxe trinngle.

12. If mases 1, 1, 2 are placed at th& points (2, 6), (4, — 10,
{~1, 4), ird t'e centroid of the Iasses N\

13. If masses my, my, m, are pla(;ed’:'ijt the points (my, ») (s, 2ah
{25, va), find the cenbroid of the IassEa: b

14, If masses my, mg, ... . @ are placed at the points (&), )
(2 #2) -5 (#ns s find the editbroid of the masses,

15, If & is the controidlof an ¥ mumber of fixed points 4, 5, €, ote,
and P is a variable pofufiprove that

S r =362 0 . GP,
where @ is the piwber of pointa,

. 18, Tf Aidthe centroid of masses wy, m,, etc., placed at the fixed
- points 4y, dyyete, und P is a variable point, prove that

:~\:1. E(m.PAE):;E(m. GA2)+(Eﬂa). o

A particle starts from the point (2, 3) and moves with com-
I?')’T(]Je}’b velom?eslof 3 and 4 f}elet per second parallel to the axes X0X,
Al Tespectively o prove that the position of article at time
W )#econds i specified by the equationsp o of the particle at ti
3 : T=243t, y=3+4z
the seale unit of each axis being 1 foo,
Graph the line of motion and find its equation in the foru

18. A particle starts £, : )
arrives atpthe point (_qg: ?31)1!; tél_sdp?;nt (-4, - 1y and one second later

deduce the constraint equntion. eedom equations for its path and
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19. The scale unil of each of the axes X'0X, ¥'OF iz one foot.
The motion of a particle in the plane of the axes is yiven by the
B tions g=—1494 y=3-1,
¢ betng measured in seconds, Guaph to u suitable seale the positions
of the purticle when ¢ is -8, -1, 0, 2, 3, 4 What are the 2~ and
yeomponents of the velocity of the particle, and what is the constraint
equation of its path ? i

20, Draw two rectangnlar axes £0f ¥Or.  Let one inch, the scale,
unit on the f-axis, represent one sceond ; Jet one inch, the scale upit)y
on he v-uxis, represent a velocity of 32 feet por sceond,  Draw™ghe ©
straight line joiniug the origin to (1, 1) The diagram is cglled a
Velocity-Time or v-t Diagram of the wolion of a point cngtm, axis.
Find From the disgram ) A

(1) the veloeity when ¢is 0, 1,2, 3, 4 ; . m\\ _

{2} at what timos the velocity is (@) 16 ft. per secy (G032 ft. per sec.,

() 48 ft. per sco, (d) 768 {l. per soe, ; O
(3) the aceeleration (increase of velocily per seGhnd) ;
{4} the space described in 1 sve., in 3 secy pddnthe 3™ sec.
% 3

21, Taking the veloctty-lime diagrami™\of” Ex. 20, find gene}'a.l
formulae specifying (1) the velocity » atitinte £ (2) the time ¢ at which
the velovity is v, {3) the space descrihe® in ¢ scos., (4) the velocity »
when the space deseribed is s, AN '

_ 82, The velociby-time diagrag of the motion of 4 point on an axis
18 a strajght line, Show that the gradient of the line measures the
accelerution of the motion. £

o 23 1f w=u+azis thelgguation of the velocity-time diagram, what
i the measure of (1 e acceleration of the moticn, (2) the initial
velocily, (3) the time wlien the particle is at rest?

24, Tind freefni equations for the motion of a point along a
straight line when the point has at one time coordmatt}S (o, b) a:nd
# seconds 1@Per coordinates (e, d). Deduce the constraint equation
of ihe ling™\™ . : i

25, Fig 1 freedom equations for the locus of a point which meves so
that, fbb gradient of the line joining it to (3, 1) is constantly 3/d.

o 26 Trove that the lines joining {—4, 8), (-2 1_) and (-5, —_1):

=%, —3) are both perpendicular to the line joining (3, —2), (3, —4).

\g B, --3) are both perpendicular to the line joining (5, —2), (3, —4)
27. Tind the equation of the perprndicular to dz+y— 2;0 through
the paing { -2, 3), the coovdinates of the point of infersection, and the

length of the perpendicular, .

28. Trove that the coordinates of the foot of the perpendicular
from the point (x,, on the Hue ax+ by 4 0=0 aro
¥ 1: 3 i
b(buy —ayp)—ac afayy —br)-be
e T @l
Guad, o2
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20. A point initially at (7, 2) moves so that its distances from the
lines 3z—4y4+-1=0, 8246y -3=0 are in a constant ratio, Find the
equation of the locus of the point and the value of the constaut ratio,

30. Find the coordinates of the point which is equidistant from
(2, 3), (5, 4), (3, —2).

81, Find the coordinates of the orthoeentre of the triangic whosf
- vertices are (2, 3), (5, 4), (3, —2).

32, If O, ¢, H are the cireumeentre, centroid and 01‘:.}1::[:o.r1'su§\of
the trisngle whose vertices are (2, 3) (5, 4), (3, —2), calyttlete DO

and G/, \
33, Find the coordinates of the vertices of the squ;u-.e;:;: clexeribed on
the join of (3, 4) to the ori gin. ¢*0 '

-

34 4, B aro the points ( —a, B, (g, —d) respcct-i"{%!y_ Thyongh A
is drawn A ¢ equal and perpendicular to AB; indvthe coordinates of
the tWo possible positions of ¢ o\

35. ABCis a triangle having 2 right gle. On AR is described
the syuare external to the triangle. If(&, OB are taken as axes of
zand ¥, find the coordinates of the veftices of the square othel thano
4, Bin terws of a, & when g— OB, b={4. .

36. 4BC is a triangle, rightahgled at A ; on BC, €A, AR are
deseribed, external to the trisaglo, squares BODE, CAFG, 4BHE,
spocitied in the order of thelrwertices.  If the figure he referved o
A B, A€ s rectangular axes of % prove that the middle point of
f;’ﬁf, has eordinates @hw, Lb+2e).  Also find the equalions of
L6 and €I, and PLowosthat the join of their intersection to 4 is
Perpendicalar to i N/

a

thg:’éqlf p, ?, R'ir"?l the middie points of the sides DE FG, HK of
vares degeribed, as in Fxample 36 i 3 irhte
a,ngl_ecl tri.apfgle' ABCG, i)rove thaf mpie 36, on the sides of the 8

72\ LALQR=2BC* 1183 1 4B,
Beodhand Bare two fi i : ;. ;
an FC an aqua,m{; xed points and € is a variable point. ACDE

N Lf the figure iy referred to rect
m\} 7 points (p, ¢) and {7, 5), what

4 39, Show that there iz a
on the lipe

angulur axes 8o that 4 and B are the
are the coordinates of 379
Point such that the perpendicular from it

it 55204 99 008 e
ot t? same whatever the value of &, and find the coordinates of the

0 I = . + . = i B1) 13

4 0 ]Dt’l Lhe ratio m wi Hi} 11]9 11][3 Jomnee {1 2 ar ]
111 111 iy ( 3 ) ( ) E

cuf be th.e hﬂe 2-1-"33!'}‘1‘-—0 a.lld the CDOIdII]ates Of bhe P()l
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41, If AB €D cut at O and 4, B, ¢, D have coordinates (— 4 1),
{2, 3), (8, —8), (=1, 4) respectively, find 40: 08, ¢0: 0D, and the
coordinates of 0,

49, Prove that the line joining (10, 5) and (2, 3}is divided internally
and externally in the same ratio by the cirele 4%4 5*=35.

43, Tind the equation of the parallel to 20— 3y+1=0 through the
image of {1, — 1) in the given line. ’ ;

44, 4, B, ¢, D are the four points (2, 4), (5, 1), (10, 6), (?\'3)\

respectively.  Show how to draw a line through the origin dividing
A8 and 00 in the same atio. Prove that there are two solutions of
the problem, and find the equation of each of the two lifigs which
solve it ’ ()

. - : "

45, Civen one side of a gnadrilateral in magnifude and position,
the length of the vpposite side, the angle between blbiese two sides if
produced, and the area of the guadrilateral, ﬁnd\‘_{Jm locus of one of
the free vertices. _ ¢* . i

46. Find the equations of the tavo htrmg}rt Yines through the point
(3, 4), which are equidistant from the twolpdints (2, 1) and (1, 2).

47, A and B are points on the .'c;ai(’ié, ¢ and D arve points on the
yaxiy, 4 £ and BFH ave parallelssbo ‘the y-axis, CEF and DGH are
parallels to the x-axis, and AF andWE meet in P If Fis the point
(¢, b} and & the point (g ), fad the coordinates of P in terms of
it, b, ¢, d, and prove that 2 liésen the line 0F whon ¢ is the origin.

43, Find the equzﬂtiqa'“&‘ the line joining the point (-2, 1) to the
intersection of w—y A%TO and 7+ +33=0, and prove that it bisects
the angle botween €hei. ) _

49. A line meves %0 that the sum of its distances from the points
(3, — 1), {—3, A= equal to 12 ; tind its envelope if the line does not
pass betwegmdbhe points, :

50. A diie’mioves so that the sum of the reciprocals of the inter-

© cepts yw}l‘]é on the axes is constant and equal to & . Prove that the
linefnall positions passes through the fixed point (1/%, 1/%).

~LBL Prove that poBtb M
z"ﬁ TpEee Tprgt
where ¢ is a parameter, are freedom equations of a straight line, and
find a transformation that would bring them into the form

z=a +bu, y=dc+dn,
where 4 is the parameter

52, TFind the in-centre of the triangle whose sides are
) Srt+dy—19=0, Fr-4y=0, y—6=0.

Q



N i,

Ofthbcentrs is the line
Q\ #(sin 6, + sin G+ sin ) - 3(co8 B +cos By +cos #,) =0.
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53, One side of a square of side « drawn from the origin bas
a gradient tan ¢ ; prove that the equations of the diagonals are
y{cos & - sin By =w(sin 0+ cos F),
#{sin 8 + cos @)+ 2({ces § —sin B =a.
54. Tind the in-centre of the triangle whose sides are
z—y+1=0, x+y-T7=0, x-3y+i=0.
55. Prove that a common tan ment to two cireles cuts the jw\iil\of

contres internally or externally in the ratio of the vadil. 2N
Find all the common tangents to the circles « \
iyt -3r—dy=0 and at+4p?- 21000
56. Find the equation of a stiaight line through Q, & and waking
an angle o with the line y=mx -0, ~
Find the eqnations of the sides of the 1'eot-a,ng1e Avhich has (1, 2),

{3, 4) us coordinates of the oxiremities of oqc,dia.gonal annd wlose
other diagonal is parallel to 22— 3y -0, Ve \\d

57, Find the coordinates of a point syeliveliat the line joi ning it &0
blie point (7, g} is hisceted 2l right anples by the line Le+my +7-0;
and And the locus of the first point wlign the only restriction on the
given line is that it shall pass throwghea fixed point.

88. 4 and B are the ﬁxedrp’éir’its (o, Lia), (B, 1/8), P a variable
point (i, 1/); LA and PB mcet the axes of o and yin M, W aud
¥, ¥ respectively. Prove that ¥¥ and N ¥ are of constant tengths.

59. Tf 4 and P be swodpoints on Lhe axis G, D and @ two poiuts

on the aﬁis Oy, A andB hoing fixed and 7, () varving in snch a
my ha (W ’
nngrt at { 1 1 1 1

\ 04~ 0PT 0B og

show that 26 :m.sses through a fixed point.

0. ’l:lile:vertices of & triangle lie on the lines
¢ y=xland, y=srtanf, y=wrtan 6.,

N :
thﬁ;.mumcentre being at the ovigin ; ove that the locus of the

61. The equations of the sides of o trd
_ Swthy=12, Br-19y=20, 94y-Tp=12
Find (1) the aren of the trjan gle, (2) the eoordinates of the in-centre.

62, Find the equationa of the tap ] . ]
i 2 0. fe Aangents from the point (11, 3) to
the cirele @24 2265 and of thoge from the point (4, 5)pt.o t.hfg ci[-c]{)g

2.&:‘2+2y2=8;7.‘+]231+2'i =0

avgle are

sic?ez. mI"‘;ind the equation of the cirdle inseribed

in the triangle whose
=0, =0, @jdiyjs=1.
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64. Diaw the loci whose equations are
| e=y=1, a-a=0, (r-af+(y-hy=0,

{r—1)r -2 {y— 8y - 4)=0.

65, 17 the coordinates of 4 be (3, 0), those of B (0, 3) and those of
C(=3,0): and if O divide 48 so that AD=248, and £ divide B¢
so that AA=zDC, find the points In which OF cuts the coordinate
axes.

66, 8(" is a triangle; if the coordinates of 4, B be §9,_ 0 (0, 95N,
and the lengths of A ¢, BC be 13, 5, find the coordinates of £ (™

'\
€7, The coordinates of I* and @ ave (0, 5) and (15, —4). JTf\the
point R, whose coordinates are (5, @), lies on 1@, find the yaluk of &
and find in what ratio 29 is divided at 2. : o\

68. 4 and A arc two points on the z-axis equidist@nﬁ from the
oripin 0, and ABC is an equilateral triangle, Shawthat a point
which mioves so thut the sum of the squares of dis,distances from
the sides of the triangle is 2042 describes a ci,v«te_u Fiod the radius
and the coordinates of the centre, and draw the dirdle.

69. The straight line z=a+ bz, y=c+dfhests the axes in Fand §;
find thie arven of triaugle 0P, where O is'the origin.

W0, 1t .fp",.-"a—f-?,‘_.-"h':l intersects /4008 and sla=y/4b in £ and @,
find an expression for the Iength ofel¢

71, Prove that the circles 8 N
Bt Ae=od and 2R py=1
touch if Nt 4N+ a3 - 4 - =0,

72, 4 and B are thg\piiinta {a, 0 and (0, b}; 04 PR is a rectangle

and ¢ is the projechion vf P on 48 If 4 and B move so that
: \ Ny @ =c(a+ 8%,
where ¢ ig con’sti&nt-, show that the locus of ¢ is a straight line.

73, I’,.@;ifi start simubtaneously from thq points 4, B, €, whose
coordindtes/are (e, '), (B, ¥, {e, ) If their component ‘:SIDCItleS
plaml]'si\az_: the o and 'y axes are [ and 7, m and m’, » and #' respec-
tivelyy find when P, () R are collinear.

L Prove that the centres of the three civcles :
N/ Ap—dw-2y-T=0, ettii=3e, 2094280 +4y=3
are eoliinear. _

75, 4, B, ¢ are the points (1, ), (0, 1), (1, 1) respectively, and 0 is
the origin. A point I moves so that the product of its perpendisular
distances o 04, BC is equal to the product of its perpendienlar

distances to O 4, 4¢. Pind the equation of the locus of 7', and discuss
the equation.

Q"
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distance from (1, 0) exceeds by unity its distance from the y-axis, and
find the equation of the path. .

77. Find the equation of the parabola whose focus is (0, 3) and
whose directiix is y=1,

78. Drvaw roughly the form of the parubola whose focus s (2, 8)a
and whose direetrix is #=y, and find the equation of the paraliola.

79. Draw the form of the ellipse whose foci are (-3, 0) and {3)0)
when the sum of the focal distances of any point on it is 8, Eihd the
equation of the ellipse. \,

80. A varfable point moves so that the difference of dtsidistances
from the points (0, 0) and (3, 4) is 3 ; draw the form of 26he Tocus and
find its eguation. - : S,

%8, Sketeh ronghly thé lkmth of a point which moves so that its
h

81, The focus of a parabola is {3, 5) and the dirgobiix is o — 2y=2;
find the equation of the parabola, -

AY;
82, An ellipse has eceentricity 2/3, foéyl} 18 (=1, —4) and the
eovresponding direcirix is 2Zz+ 3y=>5. Yind the equation of the
ellipse. \Y

A

83, A hyperbola has a focus at ,the‘ p;)inf {2, 1), the corresponding

direetriz is =8¢ +5 and the ecceutricity is 2. Find the oquation of
the hyperbola. ) ™N

84, A variable rectang]e‘.\v'hu.s_e diagonal ‘= of constant length @

hins one vertex at the vrigin 0, a second vertex A on the 2 axis and a

third vertex B on the geagiy. 1f & is the free vertex and P(x, y) the.

projection of € on xili},\_(]) find the equation of the locuz of ()} (2)
@fﬁ((m fa and  yla=(0Biay;

{3) find the oqiation of the locus of P, and sketch the form of the

locus.

85, Tipd $ie equalion of the vadi
commopschord of the circles
NV o+ by 4e=0  and oty day+e=0,
BB Ciriles are drawn through the

cal axiz and the length of the -

) oint (¢, 0) touching the circle
. ft,s‘“*-l-_?j”=_a2. Bhow that the locus of tﬁ © of fpuching
~aTespeet to these circles s the curve

¢ pole of the axis of x with

- _ 4aﬂ(x—-c)“=(a?—e‘z){az—(c—-Qx)g}y?.
8T ]i“ind the equation of the chord of contact of tangents to the
otrcle 2% £32=2 from the point {4, B,

1% this chord subtends a right angle at the point (&, ¥), prove that
AR~ h gy : '
W=

88. Find the coordinates of th
2%yt .

¢ limiting points of the circles
~224+8411=0 angd m”+y2+4w+2y+5=0-
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89. Find the cquation of the ciremmeirele of the triangle formed
by the pair of lines %+ 2hxy —3%=0 and the line y=me+c. :

90. ¥ind the equation of the pair of lincs drawr (1) from the
origin, (2) from the point {@, ¢) to the intersection of the line
Leamy +n=0 with the line-pair

ax® + Shay + by + g+ By 4 o=, A\

91. Prove that the circle which passes throngh the points (s, aft), o
(ety, arfta) (ats, afty) also passes through the point (a/fsg, antt). 3N

92, Find the equation of the circle circumseribing the square, ’\fﬁ*o '
of whose adjacent sides are the lines joining the origin to the hoints
(e, 0), (0, o). What is the eynation of the tangent at the origin 7y

&L‘:*‘ 3. Prove that the two circles, each of which passes (deugh the
two points (0, a), (0, —a) and touches the straight line\g™ b+ o, will
cut orthogonally if e2=¢*(2 +m)

94, Prove that the circle on the line joining the ewigin to the point
(%, 1/c%) as diameter passes through the point ( c:}b
95, Show that for a certain value of £ theggnation
(2r—y+3)(e—y+2)+E(Br—y3 DBr —4y+2)=0
will represent a circle. TFind the valpdi*find also the xadius and the
coordinates of the centre of the circlédy :

™

98. The equations AN
2244 Ma—a)=0\ and 2244 ply - 5)=0, .
where A, p are parameterserapresent two variable cireles which touch

one another; show thatzthe locus of the point of contact is a civcle,
and find its equation, .

97. The straight Uthe joining the point (x, #) to the point (2, v}
passes through«thespoint (s, 0) and subtends a right angle at the
origin, If one point moves on the cirele o
P4 &2yt 202 =0,
the other\thores on the circle

O\ 2y E02  a)—{)
\ c{a? 4+ 47) + 2g(a?+ 32 - ex)=0. .
9% vFind the cendition that the line xcosa-+ysina—p=0 shouid
stguch the cirele 2+ y!+ 2004 2y +e=0:
\f /Deduce the eqiativn of the locus of the foot of the perpendicular
rom the origin on a variable tangent to the cirele (ca,l}l"ed the pedal
of the circle with respect to the origin) : :

ad

99. The polars of a point P with respect to two piven circles meet
in §; show that the radical axis of the cireles bisects g},
. 100. Find the Jocus of a point such that the pair of lines joining
it to the points (- e, 0), {2, 0) are hurmotically conjugate with respect
to the pair of lines jolning it to the polnts (0, — D), (0, &)
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L. Prove that the origin lies outside the circle
BBy Bat 2+ 1 =0
Find the equations to the two tangents from the origin to the civele?"

2, Two cireles ean be described to pass through the peints (l, 23
(3, 1) and touch the line #+2y—1=0 find their siuations. (NN

3. The thiee sides of a variuble triangle pass through Lh"y{aé fixed.
oints ; one vertex los on the line =0, & sceond on theNive y=0,
%‘ind the equation to the locus of the third. L)

4. The angnlar points of a quadrilateral taken 1w dbder ave d, B,
D Puints M, N are taken in AR and €5 rcs];é&pwelj_.r: sneh that
AHM: MB=CN : ¥ ; prove that the sum of the aces YAL and CD
is constant. ' AY;

" 5. The straight lines juining a variable E)iz\1t £ to twn fixed noints
(ery 1) and (&g, 73) iset the sxis of 4 | NMAdnd Y respectively.  Find
the equation to the locus of 7 if the ratagv007 : O is given, € being
the origin. Show in what cases the Yoeus breaks up into straight
lines, and givo the geometrical expldhation in cach case,

6, Find the equations of & Ssymmedians of the triangle whose

vertices are the pownts (1, 0), (@2, (2, 4), and the coordinates of their
poiut of intersection. N

7. ACE and BDF s two straight lines. Show that the inter-
sections of AB and DENE BC and EF, of €D and FA, lle on 4 straight
line, and find its aation referrod to A C&, BDOF as axcs.

8. Ois the arigin, 4 a point whose coordinates are (2, 1), B a
pount whose cadedinates aro (3, 2} find the comdinates of & peint 7,
chesen so Bhat the trianglos OP4, APB may be directly similar, the
coordinatslates lein g supposed rectangular.

9.:~§’4iow that tho expression

x\“:"f A z ¥
TN
W\ by az+ b, 1 thy +3’1 ! )
o) C o) (2 9 > ¥
“ B il | GO AN B Y A
\ ) ) ~“1+(’3 Ka‘2+z’1 1)(%_}_52 1)
eontaing oy ag g factor ; and hunce prove that if A, 4 .A '
; g : f ] 3 , A, are three
%)l?mtshon the ax18 of g oand @, £y, B, three poiutsl;,othheJa.xia of
o0 tha thres points of Hilerseebion of AR, with 4.8 Aypdfy with
4,8y, and 4,8, wit) i straight Ting e
ally, Ay with A8, lie on » straight line,
10, The eqnation to ad ai i : '
o o EBA;+ O-—_O{;L Eirta.]n straight Tine roferred to rectangular

N ¢ s equati ofer i
trisect the angle hetween the axes, duntion l.CfGII‘ed bo the lines the
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11, Two civcles of radii @ and 5 touch the axis of ¥ ov opposite
gides ut the origin.  The axes being rectangular, prove that the
other two commen tangents arc given by ) .

' (=) + 2abh .y — 2ab =0,

12, Trove that any two perpendicular straight lines passing
throngh the points (x, 1) (#, 7y can be represented by the freedom

equationg Gl et A _ N\
and w=iwytu, =iy —ufd, 7 \\\'
respectively. Hence find the equation to the lovus of the interssetion

of the above pair of lines, and interpret your result. W

13, 4 and B arc points on the axes of & and ¥ l‘napcqti};els;:: guch
that: Od -, 0B=5, AB=r¢; prove that the equa.tior%t()jthe hie
joining the middle point of 8 to the centre of thegiztie inseribed
i the triangle 048 is v :

b+e—a)r—ale+a—byytabla ~ @\? 0.

14, Deduce the equation of the bisectors “{he angles formad by
the Tine-puir eo? 4+ Shay +byt-- 0 by expresgiggythe conditions that the
line-pair o'#? 4282y 4 Hy¥=0 shonld be {1y at right _a,ngle_s t0 qa,cll
other, (2 harmonically conjugate with, fespitet to the given line-pair.

15, If (ABCD) and {4 B0 D) are fi}'a.rm onie ranges, prove thut B,
¢, DB are concurrent. N _

18, Find the area of the tl,;ia}iglé formed by ihe lines

lr+ -m‘y‘{l, ot -+ Bhay + byt =10
17, -Find the arca (@ve”triangle formed by the lines
P, Y=, o+ by +e=0.

18. Find t.l1e"b;1'iia.[:im1 of the straight line é{mwn in‘ a g_iven
divection throgalithe point of infersection of two given straight lines.
Show that the éoordinates of the orthocentre of the triangle formed
b}' the lmff%;“aa:-{—by+c:'=0, bx+rly+f?»=0= c}‘,‘+0§+b=0

are gifin by
\ N klmne=abl+ bewm +oan, Mmny =oal +abm4-ben,
,..\:W"B\ﬁfe Vke-betoatab, [(=ai-be, m=01—ca, n= ¢ —ab.
\ 7 19. Draw the curve (e+y—18=2(z-1}{z—1)
and show how it is related to the lines
wty—1=0, #-1=0, y—1=i
20, The eqnations of the sides of a trian gic are
#tly —PF=0, wmy— mi=0, wtny-— =0
find the cocrilinates of the orthocentre.
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21. Prove that o —Baty = k(2B — Bayd),

where & is a parameter, represents any three egually fnclined lines
throngh the origin,

22. Prove that the coordinates of the in-centre of the triangls of
sides @, b, ¢, whose opposite vertices are (2, 7)), {2y w3}, (23, 4), are
az +hvtom oy +bytey,
Gf-b4e ° a+bte A

AN
28, T oo+ 2hwy + by 9gw + y+e=0 represents two Atraight -
“lines, the equation mway be written in any of the followin g forhas

(1) (3~ ab) @ty +) ~ (42 — by g O
@) (B = aB) (b 4 (17 = abar 4 A — D0,
) (g~ acdga+Fy+ o —{(g - ac)rt (fg 4’,&%;«/}2 =o.

2. T ozt Ihey by 2w+ Oy 4 e=0 repPedents two  straight

lines, the lines are harmonically conju gate with respect to eacl of the
following pairs of lines : L&

= (1) arthy+g=0, (R — qb)’,?}l?g& ~af=0;
(@) hw+by+F=0, (2~ s hf —bg—0 ;
(3) gr+fy+e=0, et :—"ac_jx—l— (g — chyy=0,
25. If (w;, gy} ds the point Qf}j'ﬁi'sgméction of the line-pair
@r 4 Dhay Pyt 9 4 y+e=0,

p'rove th&t . frd ..'—.‘Mz 'fz _ bc— = llg—ﬂi]f
}gwqc —g% bg—7h R Gl
Wil _g'mea_ar—gh
A\ by~Fh” af—gh R gp
" 26. Prove {hat the equation
e\l @+ Bhagy - by e+ 2fyde=0

"SP"GS.-“&' a pair of parallel straicht §j if 72— '— gk
s d,QQm’ersely, prov]'dle)g e ralglt lines if A2=ad and af=gh;

Q}?'?. Prove that

A~ (@5 4+ By ~ 1)(or4 By — D+ key =0 '
} " Yepresents two straighi lines it k=(s-a)(pgy. . 0
\, ox-ldjmates of their poitﬁt of intemect-img. DE=E); and find the co

28, 1If A+ 2y 4 by
and @t 21¢’xy+b’3{2+29'x+ 210y
both represent line-pairs, prove 1 Wil
oth rem ! e that they will pe
line-pair in two differeng fmgit_ions, provid:g _.\\111 h

(% ~ a4 bmy e CONP+ B+ 23ah — gproap g,

Fer 9y 4=y

present the zawe
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28. Oleing the origin of rectangular axes, prove that if pe+ gy+r=0
out a2+ 2k 4- bt =0 in L and ¢, then
A (e B 4R%)
OF 0= g o
30, A straight line 45 of constant length has its extremities on
two fixed straight lines OX, OF. Show that the locus of the oreho-
centre of trlangle A8 is a eircle, : Q"

3l. Find the ares of the guadrilateral bounded by the pairs ofa

ghraight Hnes given by the equations ¢(\A
47— By — - 2w+ Ty—-6=0, ‘\
X2+ Sy — A2+ Tar — ATy — 44 =0, N\
32 Bhow that the equation of the eirele circumseribing the triangle
forued by the lincs «..\\

a4 Phay+ by =0 and prtgy—1<0
is (@24yag? ~ 2ipg + 1Y)+ {20 +pla — e +{2pr g(a—bly=0.
83. Investigate the equation to the pola',;"siéfl(w', ¥) with respect
to the eirele -?5'2—1‘:-‘]‘2“"29‘??"[‘6“_70{ ) 3
" und show that, if ¢ be a varinble parameter/and (', ¥) a fixed point,
then the polars of (#, 5) with rospectfosthe circles will pass through
A fixed poing lying on a circle through (+, ¥) and the limiting points
of the circles, o \™
34, Prove that o~
{25+ b)t‘i-{—\2(w ~Byay+(o— 2+ )y =0
denotes a pair of straighf\lines each inclined at an angle of 45° to one
or other of the lines g\h(ﬁl by
N et 2hay+ b0, .
35. Find theﬁi]'us;bimm of the three radical axes of the circles
oyt —bp=0% (2-bf+{y~af=a}
\M (r—a-b—cPtytmabto?,
apd PI\‘(% “that they are concurrent. Find algo the equa,tu_)n of ths
ctrelewhich cuts the three circles orthogonally.
& ‘86" Show that the eq nation
O (b= (ant + 2+ byt + 2ge+2fy)+af*+ by~ 2fgh=0
Tepresents a pair of straight lines ; and that these straight lings form
a Yhombus wilh the lines a2+ Gy + =0, pro vided that
(@~ B)fy +A(f*-g7)=0
37. Find the equation of the circle which has for its diameter the
chord cut off on the straight lino a4 by +¢=0 by the circle

(03 + B+ D)= 26

™
"y Y
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'\,z’:.o'o'rdma,tes of 4, B, t7are {8, 8), (3, 43
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38, If the sides of a parallelogram be parallel to the lines
e 2hay + b =1,
and one diagonal be paraliel to
Letmy+n=0,
show that the other dia gonal is parallel to the line
YOl —dun) = (am — h1),
38, Show that the two lings given by

N

A+ 3" =(la + y AN
. . ——- NS ¢
conttain an angle 231’11‘1\/ .'g‘ﬁ_f_"" and that fetmy=0 bisactstne of
7t AN
the angles between the lings, \ 3

40, Show that the iines joluing the orj oin to the ig}({zl‘sect-ious of

B4 By ~ Byl 9p 4 3y=0 and &¢ <=1
are at right angles.

\

. A\
£l. The diagonals of o quadrilateral G e represented by the

ennations £=c, y—=c and a pair of oppositeaides by watbly? 0, Show

that the other two sides Intisuet af thaypoing $26b{(b— a), 2oai(a— A1
and that they ave parallel to the lines 0
' (27 + by + abbaet 52 = 0,
42. Find tho condition that thedstraight ling 7 +my + 0 =0 should
touch the cirele (2= a4 (y — pppe, S
Pr(alve that the equations™of the common tap gents o the cirele
#4537 =988 and the cirel€whese diametor 1s the chord of the first
ctrele made by the line #eos atyeino=15 are
3(x con ;{-{«y 810 ) 2 4(y cos o — g sin t) =85,
43. Prove that ifthe eirely
the line fz 3 my=a longth whic
then

3+:f;:3+29x+2?(3;+c=0 intercepts'fm
Usubtends 5 right angle at the o gin,
Q\ } c(F—}-mQ)-i—Q(gﬁ—i-fm—f—1)‘-:0.
44: Fi;_r'i‘tgie equation to the line bisecting the acute augle hetween
the ]mgﬂqnmmg the point (1, 1) to the puints (1, 4) and (2, 3).
fl Wi points. 4, [, € ave inverted ino the points 4 7, ¢ with
respect to a circle of radivs unity whoge Centrs s the ovigin, [f the
and (-3, 4), then
DABCIN ABC—171950,
46. Show that the straivht e thre i
48 y aight Lrough (g, and the irier-
section of the Jines A.i:—i-ﬁ"?/—l- U=0and A’mﬁ—ﬁgy]—l- (%)zo is given by
' _A_.?:_—!—_}?i;.r—f-ﬂ Ay By er
Az By 307 1 + By, r o
and . ‘ 7 1 4| .
d deduce the equatioy of the parallel through (,, i) to
A+ By 4 0=0.
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47, Find the gradient of the line w=a- b, y=e+dt by considering
the gradient of the line joining the origin to the point at infinity on
the given line.

48, The line lz+my+u=0 bisects an angle hetween 2 pair of lines
of which one is po+gy+r=0; show that the other is

(pw 4+ gy + 3B +m?) - 2(fp + gL+ my +-n)=0.
49, Show that the liuiting points of the circle a?4-2%=2% and an

equal eirele with centre on the line e +my=n lic on the curve A
(let+my)(at+yita®)=nla+ 57 . N,
50, U S=al4i2 .x‘+2-y—}—c=ﬁ0 N
¥tz \

and S =at byt 29w+ 2y =0 N
ave two civeles of u coaxal system, show that the two,peint circles
{ur limiting points) of the system are given by the equatinn

SUF gt - )= S8 (26 + 25" — e — )+ SRR -9 =0,

51. If OX, 0N are the abecissa and m‘din%o‘f a puint P with
rospect to rectangular axes A'0X ¥OF, fuidrthe locus of P af
oM -1/0N =1, o

52, A locus is determined by the cordition that the sum of the
squares of the distances of any pointe R on it from twe fixed points
A and B is eynal to the squarve of tlieddistance of P from a straight
line perpendicular to 4.5 Showatliat the equation tu the locus can
be pat in the form (v — )4 2240 .

53. Two points P and g,ta.rt'f rom the same point 4 on the cir-
eumference of a cirele andQhove along the circuwfereuce, § moving
twice a8 fast ag 2. Fip@ 3 constraint eguation for the locns of the
intersection of the t{nlgeﬁbs at ' and €, and give «u rough tracing of
the locus. \

54, 0X, OF g rectangular axes and I, T fixed points whose
coordinates aue\(p, g) and (-, «) respectively. 4 and B are points on
the axes OXOYF respectively, and A and BF meet in I If the
avea of thexguadrilateral 04 P8 be eonatant, prove that the locus of P2
iz acu \ix‘\@urve which passes through the points (p, ) (v, 2} (r, @).

FEA M ‘vivele is deseribed en 04 as diaweter, where O s the origin

andl® the C{Joint {Ze, 0. P is a variable point on this circle and OF
...\fsn\pl'odnce , either way, to @ so that IQ—=b; find the equation of
the locus of ¢ The locus iz culled a limagon.

56. A and £ are fixed points on the axes of @ and g such that
Od =u, OB=D, Pis amovable point and £ and AP most the axes
of wand ¥ in Cand D, If the sum of the arvcas 4LC and B0 he
eotstant and equal to 0% find the squation to the locus of P,

57. 4 und B arve fixed points on the axes of & and ¥ respectively,
_such that Od =g, OBw=b; A" and & in like manner two other fixed
points on the axes, such that O4'=q), OF'=V. A movable straight
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line parallel to 4’8 meets the axes of # and 7 in A4” and A respee.
tively. Prove that the locus of the interssction of A" and ABiaa
curve of the second degreo which pusses through O, 4, £ Wlat

. peeuliarity avises when A2 and A'A are parallel ?

58. 4 and B are variable points on the axes of 2 and i respectively,
the abaciysa of 4 being p and the ordinate of B being ¢, such that
Ptg=a, a constant, A variable point P equidistant trom A aud B,
woves so that the aren O4PB=¢%, a constant; find the eruation
of the locus of P,

59. A eircla of radiys @, whose centre is the origin, ments thé s
of y in . ) is a variable point on the eircle, and 01 wéets the

N

- tangent at 'in 7 ¥ is the projection of § on the axis of A aiid #9 -

N

" If 4 is the origin,

18 prodused to £ so that M P— CT; find the equation 6f The Locus
of £, and roughly tinee the loeus )

#%4

L .
80. OX, 0 are fixed axes inclined at any ang.I'é‘;\ A and B oare
fixed points. on O and 0§ respectively, snch Wb 0d =u, (8=},
R is a point whose coordinates ars (& ), BR AR AR mect. O and
OF in" P and & respectively ; find t%e aquétion to the straight
line PO, and show that if Pt moves so thainGP— 06, then the locus
of £3s a curvo of the second degree whiph\passes throy gh 0, ., B

8L The vertex 4 of 4 triangle d BOMS fixed, B moves on 2 fixed
civele to which B¢ s a tangent and b= OB ; tind the locus of ¢

82. A is the point (g, 0, & i@ variable point on.the circle centro
0, #/2), and vading @2, whose\abscissa and ordinate are (0¥, ¥g.
A9 meets the y-axis in K T P is the point whose abseissa and
ordinate arc (), V&, prowe Yant the loons 0}‘ Pis

Y — w4 iy g @'y + aZx? — oty =0,
Bketch the loens, < W ’

63. O iy the Origin, 4 is the point (o, 0) and B the point (8, 0)
(b< a); M@ isg waviable ordinate of the gipcle on 04 aI:s diareter, -
If \B[’_ paralléllfo 06 moets HQ in P skotel
prove that Shdbequation of phe locus is :
G .:f,;ry‘—’-I—.ﬂr"—'(:?b+c¢)a:2+(62+Qab).'};'—-ab*:O.

6 Y, .J:\ a . ) . 3
ab.&% 8 & variable point on the jine

Ne ¥=a which meets the y-axis
B (0 iy the origin and on the line 04 are cut off @0, @i equal
ge.élsQi;sketch the loensof p £, and prove that the equation of the

- 2ays+r52‘g;+x2‘ay ~2ari=,
what doos the equation hecome ?

B5. € is the point (0 @) wi . . . .
; POt » €)1 With centre (f 4 oipele 18 deacriled to pasy
3120:%21.;’1‘1;5!:8?}1' 0-‘- rll.'he ordinate through &, a variable pn[m? on
2hs the clrgle | f P : ) 7 f
such that ’t\’P is & mea,lrfb emn @ 1 £is g Point on the ordinate #¢

proportional hetweey 07 ; ¥¢), sketch the
locus of 7, » and prove thg the equation of tlallt;l loéug Illsd Y8 skete

Tyt =20
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66. A is the poink (e, 0} and OC is & variable radins of the eircle
centre O, the origin, and radive . B s a point oo the circumference
sech that A0= 8¢, and from ¢ is cut off G4 equal to the ordinate
of B;' sketch the locus of P, and prove that the equation of the
Jocus is . (2312 = dat.

67. O is the origin of rectangular axes and € is the point (@, —a).
The circle centre €, radius O, is described, and ON, N@ are-the <>
abscissa and ordinate of a variable point ¢ on it. If P is a poing |
on ¥¢ such that ¥7%=0N, ¥¢, sketch the locus of P, and prove thag )
the equation of the locns is _ e\

h gt =2as(a? — g). \ 7
B £ Ny

B8. O is the orizin and ¢ is the point (— g, 0); the cirgle eentre €,
radius €0, is deseribed,  An equal cirele rolls on this (%];Qlé; sketch
the loeus of the point which is initially at O, andyprdwe that the
equation of the loons is ) v

@+ 2%t ot dayPe +Haxt= 4000
69. A variable ordinate meets the circles '\ &
{(r—2a¥+y=40? and (z—MOV A yP=164°

at ¢ and A Skotch the locus of the mi(idfe point of QR, and prove
that the oyuation of the Tocus is o™

-ty — 6{;&{5{2"—}— aZa?=1),

70. O ix the origin ; B, ¢ arelthe. points (&, 0), (s, 0) respectively.
OF, ¥¢ are the abscisss anghordinate of a variable point @ on the
cirele deseribed on 08 as @iwmeter, and the parallel to 0§ through
O meets ¥Q in P; shetgh f,he locus of 7% and prove that the cquation
of the locus is &\ '

~

\
a gr..xs\— (B+ 26)a%+ (0 + 2be) s — be2 =0,

Ezamine the eas;a“v'v;hen e=b.
A\ W

x:\..'
5"\.“

\..a
p
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thesgiven equation,
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{CH. X.

CHAPTER X.

THE CONVERSE PROBLEM. GRAPHS OF EQUA’L‘I.OI}T@\
POLYNOMIALS, S\

.76. The Converse Problem. It has been shown fiow a
specified locus or eurve may be represented by ¢ efuation;
the eonverse problem is to represent a giversduation by
its graph and to find the properties of the wpaph front the
equation, Some cases have been already-dedlt with. Thus

we can draw the graph of any equation. 6f the forms

3

am+byte=0 . )
e tayt+2ge Ry te=0, ... (2)

and we can find properties_of the graphs by discussing
the equations, =N
For example, the eruation ;é2+y2—6x=0 represcnts o clivle of
radius 3, with its cente a{the point (3, 0); the gaxis is a tanpent
to the cirels, the origif heing the point of contact ; other tangents
are at ance seen o Vg %="43, y= 3, #=8, and g0 on.
In Chapter IX. some other curves weve considered, Lheir
x - T
equations befig” found and some properties stated. We
now 20 on %o discuss more fully the drawing of curves

from ﬁhglglf\equations; ab every step the student will have -

bo remiember that & point Jits on the graph of a given
equetion if and only if the coordinates of the point satisfy

. -louting by Points. The wmost straightforward way
of obtmmng -th

the coordinates of 3 number of

draw a curve through them, The chief rule to be observed

is, that the points obtained must be close enough together
to enable us to be sure that we have found the veneval
trend of the cury ' =

€; a8 we proceed we shall find means of



o\ ¥

576, 77] PLOTTING BY POINTS. 183

reducing the necessary number of caleulations. The student

has doubtless had some previous practice in plotting simple

curves fromn their equations, and we shall here only refer

to one or two important types. ' '
Fig. 67 is the graph of y=a® from #= —2 to £ =2,

T T T1 ? AT
1 H 1 B
! b T ;
i T f I T
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-—'—xﬁ- ; . ‘ N _}_L)’____ T 1 l‘_ __4-..|___,K:
| —— —17 +f N EE
i AT Tr g |
\ Fre. 87
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The diagrage,from which the figure is reproduced wasg
drawn to a(seale, “1 inch=1,” for both axes, and therefore
shows oply)a small portion of the curve. As @ Increases
bf}}’OU, 2,/the value of i grows very rapidly, and the curve
rises @dpidly ; to show the eurve for such values of y, we
must choose a small unit for the y-axis.

In ovder to have clear notions of the way in which ¥

\Faries as @ varies, it is woll to take the difference between

successive values of @ to be small, say 0°1, as shown In the
fullowing table B

© 0 a0 | ox0w | .| %1 ‘ +11 | %12 ‘ ‘ +2
|

o o0l Tooa || 1 ‘ 121 | 144 || 4
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The student should complete the table; it will be seen
that when 2 incresses by small amounts g afso increases
by small amounts, so that the eurve s bound to he a
continuous, unbroken line,

The curve 18 symmetrical about OF beeanse, i « is any
number, the ¥ of the point whose # is —a Is the same ag
the i of the point whose & is +a; in other words, OF
bisects all chords that are parallel to X OX. AN

As a point moves along the curve from any position‘od
the left-of OF to any position on the right, th&i,(}:{'diﬂ&te

v I P

I r—j(i AN
' . I 4
1

it

A\
e\
G

N

:~"'9~f' the point decma_mes till the Pt}int reaches O, &nd"! e
Y H‘:’m&a? es. The point 0 is therefore called a turning | point
goiﬁtif’: Tfl}f the valae of the ordinate af the tujming
ordinate. - MSease, zero—is called a turning value df the

The 2-axis 19 a, tangent {o the

%‘pe %urve i$ & parahola, (3 70)
iz, 8 is the (:'ra.ph of - -—fb"g. P

- & Y=u® from = —13 to =15

for larger values of 4 the values of 4 soon become § ja1ge

.-

Fia. fis,

eirve at, (),

[
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and the curve rises very steeply on the right and descends
very steeply on the left. The curve has no turning point.

In this case the origin is a centre of symmetry; if any
point P on the curve 1s joined to O and the joining line
produced till it euts the eurve agair at P, then OF'=P0.
It is easy to see that if £ is the point (¢, o), then I7 is the
point { — &, —a?).

Again, the a-axis js a tangent to the eurve at 0, but 56 )
the right of O the curve les above the tangent, wiile -

to the feft of O it lics below. A point such as 0, whert'a
curve crosses its tangent and bends away from it in Gppesite
divections on opposite sides of the point, is called @ Point of
Inflexion ; the fangent at the point is called i Inflexional
Tangent. ) ) .

For positive values of « (along OF), théveurve is said to
he concave upwards; for negative valuds‘of @ (along 0P,
the.curve is said to be convex upwards,/

The graph of y=at resembles, that of y=a®; near the
prigin it livs closer to the z-axif*it crosscs that of y=a*
at the points (1, 1) and {—1,dand then rises more rapidly.

 The graph of y=2" readmbles that of y=2a*; near the
ovigin it lies closer to tire z-axis, it crosses that of y=a° at
the points (1, 1) and g3 —7) and then rises more rapidly
on the right and o@;@ﬁda more rapidly on the left. _

In order to appréciate the differences m the behaviour of
these curves, phestudent should draw on the same diagram
the graphs efy =2 for n= 2 8,4, 5 from z=0to &= 12,
taking 1 Aneh as unjit length for both axes. He should

“also drg@the graphs of the same-equations from z=1 to
r=32 i

say 02 inch, the unit length for the @-axis heing

N 78] The Graph of y=ax". If ais positive, the graph of
#=ude® is obtained from that of y=2" by multiplying each
mdickate of the latter curve by «; if a=2 we double cach
ordindate, if w=% we halve each ordinate, and so O T}:E-
grapi is thus of the same general character a8 that of ¥ =a";
it lie, if @ >> 0, above the Jatter when @ >> 1, below when

@<

Y this case the unit. lepgth for the y-nxis must be

Q"



OV = ,that is, if the new
“double the old unit segmens

o
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If & is negafive, say u= —¢, where ¢ is positive, the graph
of y=ak®, that is, of 4= —ca® is the reflexion in the x-axis
of the graph of y=cz?; or, if we produce sach ovdinate of
y=cx™ its own length, downwards when the ordinate is
positive, but upwards when the ordinate is negative, the
ends of these ordinates will lic on the graph of 4= — .

. The important thing to note is that when « is positive ¢

the curves have the forms shown in Fig. 69 (), (), and

that when ¢ is negative, they have the forms shown ‘i)

Fig. 69 (¢), (). 'S\l
Y

y a N
Y : . Y,
X x O3 X
s T
v A a Yl 74

m{ Tic. 89.

. . ¢ )
It is possible, h{\a mere change of scale, to interpret the
graph of y=q» a8 helng the graph of y=asm.  For example,
the graph of,n a2 (Iig. 67) may be read as the graph of
¥ =104 1P%he segment OV, which is unit segment for the
graph 9fj‘y= #?, be talen as representing 10 units; in other
wordslet the unit scgment of the y-axis be 4 of the
oldw 113 segment, and the curve will become the graph of
#5102 Similarly, Fig, 68 will be the graph of y=1a® if

unit segment of the y-axis be

These graphs are usually called parabolic eurves of ordler 7.
79._ The Graph of yo=x,
equation ¥ =a" hecomos Y
therefore the same curve
axes do not oceupy th

If we interchange  and fy, the
=2 The graph of y»fx Is
as the grapl of y=an bt the
e usual positions; in plagee of
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XV, XY, we must write ¥, X, V', X" Tt will be an
interesting exercise for the student to show that, when the
seale units for the x-axis and the y-axis are the same, the
graph of y"=x is the refléxion of the graph of y=a"in
the bisector of the angles XO¥, X’0Y"; in this case we
keep the cld axes and draw g new curve.

When # is a positive integer the y-axis is a tangent at O
to the graph of y*=2z. ' K\

The graph ol y»=ax is of the same general characteras”
that of ==, Ol

The student should work several of the ,féﬂl’dwing
examples in order to become guite familiap‘aith the
curves ; it will be sufficient in most cases to ge’t’}he general
shape eorrcetly.  He should, however, tiyvto find the
position of the twrning points as aceupdtely as possible.
The transformations of Example 5 shq}r@})e noted.

EXERCISES XX
X
1. Trace, from x= -2 to x=2, thalmeaphs of
() y=—-2%; () y=-22;080) y=—2*; (v) y=—2~
2. Trace the graph of y=2:"hom o= —2 to £=2; take the scale
unit of the #-axis to be Linsh, that of the g-axis to be § inch, and
eompare with Fig. 67. i...\
3
3. The same as Eﬁﬁgple 2 for y=%9% comparing the result with
Fig. 8. N :
4. Tracs, fromeps' 2 to 2=2, the graphs of
B y=799 (1) y=-3"; (i) y=-3¢*; (iv) g~ 3%
couldbthese graphs be obtained from those of Example 17
'fn'ﬁﬁ"ig. 67 the line throngh (0, —1), parallel to X*0X, be
a new saxis, what will be fthe equativn of the graph!?
Whal{ will be the equation if the new 2-axis is 1 unit above fhe old
Z4xlg)? What will be the equation if the new wm-axis is the line
mﬁlu-Ou h (0, &) paralle] to the old z-axis? :

" 6, YPketch ronghly for values of # between —2 and 2 the graphs of

the foklowing equations :
(ip y=2+241; (i} p=222-1; (iil) y=2745;
(vl y=24%—5; (v} y=—2a%+1; (v} g=—2af-1;
(viip y=—2%+5; (vii) y=—-22"—5; {ix) y=2a%;

y=24%43; (xi) y=2¢°—3; (xii) y=—-%%;
y=—28+3;  (2iv) y=—2¢¥ =3
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7. Graph the following equations : N
@) y==%yz; (i) y= o3 i) g o i
(v) g=-u; (v) g=r+1; (viy g= i J(9—a).

80. Solution of Bquations.  Chraphs arc often uscful for
obtaining approximations to the roots of couations, and we
‘shall take one or two examples.

N
B 1. Find to 2 decimal places the voots of the equation 2N

Bal—de—T=0. ... a1
Write the equation in the form \
. F=08r 414, LS (%)
and eonsider the graphs of. RS
Y=t ... (D) y=08r+14. N}

The graphs of (i) and (ii) are the curved linewind the straipht ling
of Fig. 67, which intersect al the points 4 apd 2 Now, the point 4.

is on the graph of (i), and therefore, dennting\xby w4y Yo Vhe cnordinates
of 4, we have ya=rt 0NN

But 4 lies also on the graph of (ii), dud therefore
Ya=08at T4
Hence ) wl=082+14
in words, #, is a root of ey u-a,t.i(p'l' 112). and therefore also of equation (1}

In the same way we sce thind g s a root of equation (1.

The values of 2, and Apcan. be pead off the Hgure, the aceuracy of
these valuos bcing detfrmined parbly by the eare with whu‘e_h the
graphs are drawn and pactly by the seale of the graphs, We can

- read with faip F.LU('-IN{\S}‘ to 2 decimals, and thus got
) N\ a=185, zp= ~083.
" These roof@ein of course be obtained mere accurately by solving
squation (Phateebraioaliy

¥ we'are, however, concérned chielly with a
method whiel can be applied gencrally,

éfg\;”.Find to 2 decimals the toots of the equation. ) :
O\ _ 137 = 62— 10=0. ..o (1)
aWrite the equation in the form 1
O Pt I8 =0460 L OTY, corv ] (D)
3y and consider the graphs of
\ g=a% (D ¥=0462+ 077, ... . (if)
which are given iy Tig. 63,

: These interseet anl ¥ at the point [4, and
“we have VA= 2O,y ra6y, +0°77, o

o =046, 4 077, '
ion (2), and therefore
b0 2 decimal places,

and therefore -

so that u, is a root of equ
The value of &, is 108

also of equaticim (1)
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For couations of the form ae®4-bete =0 this method of
solution is very convenient because the graph of #* can be
drawn with considerable accuracy by merely plotting &
sufiicient number of points. When the parts of the curve
where the straight line interscets it have been approxi-
mately found by means of a rough skotch of eurve and line, |
1t iz advisable to plot the eurve carefully in the neighhour-
hood of the points of intorsection; this can be done B
finding two or threc points in these neighbourhoods, 8o
far as the solution of the cquation is concerned, thtse
ucighbourhoods are the only parts of the curve wasted.
R
Fx. 3. Solve graphically to 2 decimal places the eh@dtTon
o A2 1=0 oo,
Wo take this example werely to illustrate ik ¥
draw the gruph of the equation AN |
Y= — 20— TNV {2)

AN (1)
er method. First
This equation is of such a simple kiwd That we can graph it Tairly

accarately by plotting poiuts; we take the range of & from o= ~1

to =3 and draw up the followin . I;a}ble :

f 8 .

_t|—1_|—os —06 04 [W{iv’z"!. u\ 02 04 00 ll 08 |1

AN . | |
¥ ‘ 2 | 1‘24: (y-ss_'-Q‘t@T 036, 1| 1ot 1oal J1se - 196

‘_ivz | 1 Jlﬁ 15| g | 22 fl z-i? 26 I| 28 f| 3

¥ |—106. 15843--1-64|_|-36
| 29\

We lxs\\ie\tzft]clllelted a large number of valucs because we are going
to use the curve to solve several equations, and we must make certain
that ks curve is fairly accurate for the complele range chosen. 1 we
Winted to find mercly the general cliaracter of the curve, such a large

pdThbor of points would not be reiquived ; even for the sclution: of
druations we unly need the parts of the curve near the points w}'lcye
1t is met by other curves, arni careful plotbing near these points is in
Imost cases quite sufficient. : ) .

Plot these points, taking each scale nnit to be 1 ineh, and draw a
footh eurve through thev {Fig. 70). The point (1, — 2)is the turning
point, - .

Now, if P is any point on the graph, we have

r=apt—Bre—1 e 3)
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: i ¢ Fto fi se voints ou the graph
Jve oquation (1) we have ovly to find those points on Lhe gra
of rfQO) E)’fct.mr\7 Ex’vhr}ch the 5(1 1)5; zero ; A and B are the points, and therefore

. Q=g t— 2wy -1, =mg?— 20— 1.
- The roots of (1) ave thus
' a2, =241, ay= 041

H_ IIIi!| !I:Lri“li'lf‘ullli_ Iluluﬂ__.l‘,;illl}:l.:‘:j:!q:‘llzl \
EERasl samannns B Emaw N 2 )
e e e _lﬂ \
e e e B T C
o illulii|l'il'|.;'| Iul'il-HJl__!H]ll] £
S S s e e ]
R T e
1 YA O T LY L R
L R e P T e
HEEsiEesea et A T ]
T o+ |I|:||II|I.I|mr\I'.
gt e Mg e L S
T :ii:!.:_g_' A e
'IIII-IIlI|I|| N ||II|I T n !
Hifina
e Rt Ly
HH—'—H—.—LIHiII'I?\L-IiII i‘lilf‘:-|||.|lli.l-|l 1
‘||!_|iii'.2”|i!-:lll;I_. - LT
e R L T e HH
\ Fie. 70

Apain, 9 golve the equalion a? — 20 -2 =0, write it in the form
\ l=g—2x-1,
T équation (3) we must now have ye=1. ' ‘He two points on the
cupve\for which the # is 1 are € and D, and thersfore the requiréd
Jsare we=2"78 and ap=—073,
& \ " Ex. 4. Use Tig, 70 to find to 2 decimals the roots of the following
3 equations, and verify your results by algebraical solution :
(i) #?-8r-25=0; (i) #*—2x—3=0;  (iii) 2at—4x—3==0;
(iv) 2P —Aw—5=0; (v) 32— 64—8=0; (vi) ba?— 104 —14=0,
Ex. 5. Bolve graphically the simultaneous equations
g=at—2—1 Lonu(f), Ze-By=6 ... (00

On the diagram (Fig. 70) that contaius the graph of equation (ih
draw, with the same scale units, the straight line EF which is the
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graph of equation (ii}. Now if P is any

¥ point on the graph of (i) and
€ any point on the graph of (ii), we have .
Yr=xf—2apn=-1, Zawy—bye=0C.

These two equations will be simultaneons if the points P and g
coincide ; but the stvaight line-iutersects the eurved line at & and F'
and therefore ye=EE o Ry —1, Sap- By p=6.

Therofore xg, ¥, s one pair of solutions of equations (1) and (i) ;
similarly 2p, #r is the other pair. TReading off the values of thgge\
voordinates, we find that the zolutions are A\

=008, y=-117 and. x=231, y=-027. ™

Ex. 6. Bolve graphieally the simultaneous equations ...( h

() g=a?—2e -1, z-p=1; (i) ;y=.m-”—2x—1,m(g.ui«—i-8y=5 ;
(i) y=at=2w -1, Zw-y=5; (iv) y=22- 2alI\2r+y+2=0.
Ex 7. Bolve graphically the equations p \\:

(i) #—b2-1=0; @) P+ir—d=0; D) #2—Te~5=0;
(iv) 208 ~72+3=0; (v) 8+ 15— 30240} " (vi) bat - 270~ 10=0,
Ex. 8. Bolve graphically the simul’t‘a-n'eo'us_equatious

(i) #2428 =8, y=a%; (ii:lt~m?lf-y3—4x—2y=20, y=dw.
Ex. 8. Apply Example 8 to s(}'l‘ve"the equations
(i) @ +at-2g=3% (i) (27— 200 =162

81. Fuaction of x,("The graph of the equation
\ . y=a—2—1

is often called\the graph of the fumetion #2—2x—1. In
calling (27 22%—1) a function of @ we simply mean that
(#"— 2w —~<ydepends for its value on the value of z, and
varies &hén x varies. This variation is exhibited to the
eye dnthe graph of Fig. 70. For example, we can say at
oneg, that (x” —2x—1) is negative so long as = lies between
(53041 and 241, that it is positive so long as & is outside
3\ Vthese limits, that it vanishes when z= — 041 and when
#=2'41, that it reaches its least value, namely ~ 2, when

#=1, that its value is —~0'8 when #=2"1, and s0 on.

If % then stands for (a2—22—1) or if y=a*—%x—1,
¥ is called a funetion of #; « and 9 are called variables.
Here the variable y depends for its value on the value of
the variable z; z is therefore called the independent variable

Ga.0, H M
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and y the dependent variable. Sometimes the independent
variable % is called the argument of the function 4.

The stndent will readily recall examples of two variables
which are connected as independent and dependent.  Thus
the space deseribed by a falling body is a variable, the
time of falling is a variable, and the space described varieg
with the time of falling; we say the space described is "
function of the time of falling, and fhis dependendg Nis

rexpressed by the equation s=L1gf%.  Again the volminhe of
& sphere varies when its radius varies; the voluuie is a
fnuction of the radius. What function is the yolime V of
the radius »? It is the function 4xv%, ahd we write
V=1txes, . ‘&) .

In these examples the independené\variables are ¢
and r, the dependent s and 7 respectively. We might
ask, how does the time of fall vary with the distance
fallen? The answer would be eXxpressed in the equation

'2\/ (;) In this case ¢ depends for its value on the

value of ¢; ¢ is now t-he,;l‘egpehdent and s the independent
variable. That variablawhose values are the objects of
gquiry or caleulationnis ealicd the dependent variable, the

ofher being the indépendent variable.
We have then '\tsh.é following definition :

Definition. \ If \two variables denoted by x and ¥ are such
that y varied.in value when x varies in value, and if, when
a valiue ip assigned to x, the corresponding value of y can be
determined, Wwe say that y is a funetion of x.

Th&.fnotaftlon f(:c) is used to indicate a function of #
sowbiiat when 4 1 a function of & we write y=fF(z). The
Jotter f is a funetional sywbol, not a multiplier, and the
~symbol f(#) must be taken g @ whole.  Other letters than

7 may be used, a8 g(@), Fz), ¢(x), ..., and when different
funetions oecur in the same problem different letters must
be used. :

The symbol (o) meansg “the value of the function Fx)
when 5 has thE_} value 4" or “ the value of the function (%)
when ¢ is put in place of #” Thys I flo)=a?— 22~ 1,

fay=a*—2a—1; f3)=2, fO)=~1, f(-1)=2.
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We have noted above that the equation s=1g# not only .
determines s when # is given, but also determines ¢ when « is
given. In general, the equation y=f(z) not only deter-
mines y when w is given, but determines  when y is given;
if the equation were solved for # in terms of %, we shouid
find = expression containing = F(y), say.

In other words, an equation containing # and % cnables
us either to express y in ferms of & or to express @ in{ )
terms of ¥; an equation in = and ¥ is therefore said-dp. -
define two funclions that are said to be inverse to each
other. . A O
For example, the equation y=2#" gives, when gblved for
z, the equation x=J3%; it therefore deﬁncﬁ@}\the two
functions, the cube of a variable and the fubd root of a
variable, : PAY;

The following examples illustrate oné ©f two technical
ferms. : 3

%
"

Ex. 1. The equation Bay—do— 5!-ay‘+"}'“=6 defines two funciions ;

state the funetions explicitly. o\ .
Solving the equation for y in te}'mﬁ.é‘f &, we find

Ao 7 .

We have now expresse;k'}}}xplicitly as a function of & Tf we solvo

for & in terms of y, we\&&" . '

\ _by=T

. N> FTE T

and we have now .n\axpressed x explicitly as a function of g .In (i) the

Independent gariable is », while in (i} the independent variable 1s 7 ;
the two fupetiens. f(»), F{y) are inverse functions. '

I ) NN £ 1)

Ex. 3\ he equation }&3—2@;—{—1:0 defines two functions; state
the fantgtions explicitly.
Solving the equation for ¥ in terms of 2, we find

) ! RN 1
< WS R
Bolve the equation for x in terms of g, and we now get
a=y+ (-1 or w=y—J{F-1) (i)

In this case, to cach value of  (when #?is not Jess than 1) correspond
@o values. of z; the function @ defined hy the given eguation is
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" therefora said to be a fwo-vefued function of # 'The two sets of
values of » belong, In the graphical ropresentation, to two difforent
patts of tho one curve. For example, if we take the equation =42
and solve for @, we find 2= +fy. or z= ~fy, and = is a two-valued
function of . The equation 2= +./y is represented by the curve 04,
to the right of the y-axis, and the equation 2= — /% by the curve OF
to the left of the y-axis in Fig, 67, p. 183,

The given equation is said to define the functions implivitly | wheh
it-1s solved and expressed as in (i) and (ii) the functions are defined
explicitly. ' AN

CEx. 3. Tf yis the variable ordinate of a point § which lfc;‘?ou the
line joining the points A (9, 6) and B (3, 0), and if the ling joining ¢
and the Sm'nt C{0, 5) meets the x-axis in P so that phie, avea of the
triangle OF§ is a function F) of 3, prove that 0

ety 2 =6) QO
J= iy =5y
Bince ¢ lies on the line £, we have AN
. Lig 44 =B, \\.1
The equation of 04 is e P\% ®
=D g b s
| | e e (iD)

Now P Lies on ¢ and ye =0 therefore, by (ii) and (i,

262 B(yg—6)
_ m':rp_ye—5_2(.’f/q—5)‘ SR 11 |
Hence, from (ii), "

QBQ:: ${zeye — wgyn)= B(70=6)

. X &(; -8)"
Dropping thpw}%ﬁx, we huve (_?q ?
_Syly—6)
==
N
N\ .
. ’\\‘,: EXERCISES XXI,

~;{1. AB is a straight line bisected at ¢ On A, OB, AB ars
) sgtiﬂ‘lbed is)cma:u-ch_gia) ctll,l]. on the same side of AB, Lot & circle,
J us g be deseribed to touch the thr icireles, _
¥=F(#) Prove that Jlx)=z/3. ®6 semicireles, If A¢/=z,
2 4 is the fixed point {a, 0), referred to rec ..
- y O, rer : ectanguiar axes, origin 0.
T]:a‘c’. ﬁx'ed_ vircle, sentre 4, rading g, is descﬁbedg A variable circle, -
racius y, 18 deseribed in the quadrant YOF, to touch the fixed circle
externally and to touch OXav . Tt OF =g, ¥=Ff(z). Prove that
_#(r—32a)

= 2
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3. ABC iz a fixed trisngle; P is a vaviable peint in AB. PD,
PE paralle]l to C4d, UB rezpectively meet these sides in F| D
respectively, Atz PD. PE— -fx)y POIPE=Fix) Prove that

a?n (r' Ble— x)
A= -

where o, 6, ¢ are the sides of the triangle,

4, The diameter of a fixed cirele is . If y=7(x), where » ia the
length of 4 variable chord and y the perpendicnlar dlqta.me of the‘ \
chord from the centre, prove that fz)=/(a? - 49,

5. A is the point (0, 2} referred to. rectangular uxes, origin Osand
the circle on 04 as dizmeter i3 deseribed, the centre being oy s
the variable point {(», 0). The tangent from P to the circlemects t.he
Yne y=2in €. TIf PG=F(z) prove that f{z)=2+1/z L& /

6. The readings on two thermometers, one (‘entlgrade the other
Fahyenheit, immersed in a basin of sater of uniform temperature,
are g, » rcspectn ely. 1f y=f(x) prove thut f(m).\\g(’a: 32),

7. 4B 1is the dismeter of a fixed homlmrde\ “P iy & varisble point
i 48, and semicircles are described om\A 2, P8 to lie within the
fixed semyicirele. A variable cirele, mdms #, touches the three

sowiciveles ; if AP=a, y=f(w ]31:0‘,3 that F(z)= ar{e—x)
where AB—a. =), (o= 3a? - ax+xty

8. 4, B, ¢, D are the \extlcéq \in ordm of a quadrilatersl, where
48= OD—O' a constant, AC=BD=% a constant. Tf B(=z and
4D =y, then yisa function/of B, say f(x) Frove that f{x)=(b%— a¥)/a.
O

k™ _

82. Rough Fom\f a Graph. Polynomials. When we only
wish to discusg\the variation of a funetion in its leading
features, it a8 ‘desirable to be able to determine the shape
of the graplr rapidly., Tt is easy in certain cases fo draw
quickly (thé rough form of the graph; the following
BX&IQI&S explain the method. :

A8 y=(@—1)x-2)
\m (1) Notbe the zeros of the function (x—1)(z—2).
(@) When 2=1, y=0. Mark 4 on the diagram
(Fig, T1).

When = is a little less than 1, the factor (z—1)
is small, and thercfore (z— 1)(&-—‘?) is gmall and
has the sign ( —}(— ) or, on the whole, (+). Mark
B roughly on the diagram,

%) and Fla)=
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When « is.a little greater than 1, the faefor
(z—1)is small, and therefore (& —1)(2 —2) is small
and has the sign {+)(—)or (—). Mark Croughly
on the diagram. .

(b) When #=2, y=0. Mark D on the diagran. O

When % is a little less than 2, the factor (@—2)
is small, and therefore (2 —1)(x—2) is sufmliind
has the sign {(+}(—) or (~). Mark F\ztughly
on the diagram. N

When « is a little greater than?2) the factor
(#—2) is small, and thereforg-fuZ 1)(z—2) is
small and has the sign (4 )6R)or (+) Mark
F roughly on the diagram, )

2%

K N !
X
1 a fan
.
-H gHH
i - » ;L_
{0 R B -
- n3 .| d
N <= Fi
N | |
by i
T 218 Fi
e N f
. p ANN C
B __ﬂ\ I Fuc
. aw \1 [ | [ 1T ‘f
£ ‘\ N i !\\ T | HF -__|_ n
\, oM unuunny BN AR
) s A AN h{_ [ ,
O REEEsuunasREELE aususs d{CIEHEE
Q) PR R e e
Fia, 71,

(2) Note the intereept on thé y—éxis.
When =0, y=2. Mark ¢ on the diagram.
(3) Examine the function when gz ig large. . .

When z is large and positive, (z—1)z~2) is

large and positive, Marl HK roughly on the
diagram. ' =
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When @ is Jarge and negative, (z—1)(x—2) is
large and positive, Mark LM roughly on the
diagram. - : _

(4) Mark sclected points on the disgram to give what
precision is desired to the trend of the graph. :

When a=145, y=-025 Mark N. R

When =05, y= 075 Mark P. )

£\

When =25, y= 075 Mark W

When #=8, y= 2 Mark R “
(5) Finally join these parts of the graph hy,dsthoothly
ronning hine, It is obvious that there must be’'s turning
point between 4 and D, and it must be near W15, - 0-25).
At a later stage we shall be able t/Bx" the position
accurately. - o\ .
All that need be written down preparatory to drawing
the graph is the following table : o\
s 11 i.]— 13 ] 2 ;!2._i|2+v]::(;':|;k+oa|’l—oo[ L5 |05 |25 |3
B
I

N

¥ 0 !0+‘o-. | 0 %U-—*O%H [-{-oc‘—:—c: 025|075
L : . | i

—— <

gvivg 4 B O p B F GHKLIN § P @ R
N\ .
The symbol 1 }ieans a nuwhber a little less than 1,
while 14 meandd number a little greater than 1; 2—,
2+, ete,, haversimilar meanings.

Bz 'Sket&x};}l; rough forros of the graphs of
0 v E@-2); () y=2(z-1); (i) y=(2-a)( - 1)
W y=s0-2);  3)y=(+2)B~0); i) y=(e+1)r+2).

\l:f ' y=x{x—1)(x—2).
\£0n8truct the following table:
= Do e e T
¥ _‘_E;jo_-p[ 0]0+}0—[ 0 0___(_0+}+m —w 1_9|'O4JE‘F19

0
— 1 i

Sing 4 B O D g F G HKEKILWN N ¢ R ST
ofFig‘ 73, .
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i is obhvious that thers must be a turning point between
4 and D, and another between I} and G-

Ez. 8keteh the rough forms of the graphs of
) g=(=1)e-D-3; () y=(@—2(e—Blr—1);

() y=(2-2)(z—1)(z~3); (iv) y=—afr=-1)z—-2); O
) y=a{z+D{z+3); (v1) g=-(+"-1). O\
ne
T e L O
i ER A N ) NIEAEIE ’,:’.
T ] N
. H (- i H P "’T
- i T I
; ] [
-1 |+ ] T
BT ‘i o
HE s; T
€ Tl E
NID Gyt
_b‘:l ’1 - N (_
HH oHr e
O\ Tic. 72
O |
%ﬁ“i y=%(x-2)
A\ Construct the following table :
'.\w.' —_— }
<\}.. w‘0|0~‘0+[2 2124 +cn}-— ‘111-- -4‘6‘-5 29

3
yiﬂ ‘O~[0—|0 ‘o-‘o

| to|-=|T| 1372 |55 1
‘giving 4 B ¢ p 778

EF GHKLY § P O Roflig T2

Note the points M, N, P required to get even a rough.

notion of the dip of the oh.  There 1 jons -
ing point bet\vegn N andggjp - There is obvionsly a turn
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83. Graph of ¥"=1i(x). We consider some simple eases,
F(x) being & polynomial. S
To cach value of 2 therc are two values of 4 which are
numerically equal but are of opposite signs; the a-nxis is
thercfore an axis of symmetry, so that in calealating co-
ordinates we need only attend to one value of 4. Q)

T . | # 3 \\
— . | {( !T! R N\
16T | Y My
i 2.
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1 / \r v
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u EEECGENY AR
1" Jl A .. . L)
¥ T | 2 K
H b Y RN
T A
| [ ] \ f'
| | {m\ 3 /
| Y Nll\ {
S \’ '1 LLILE - f
4 ![J =R
7INF A [
At Jl,ll
b T
) KLV H 1
~O Fia. 73

V=3 or y=i./(x)

If % is negative o will be imaginary; there is no parb
of the curve, therefore, to the loft of the y-axis. The
values of ,/(a#) are easily calculated for a series of values
: 0, 02, ... of w; the curve, which is called the semi-
tukbical parabola, is shown in Fig. 74 It consists of two
A0, o2
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branches 0A, 0B, and the z-axis is a tangent at O to both

branches.

A point such as 0, at which two branches 04, OB have

the same tangent, but beyond which they do not puss, 18

ealled a Cusp. )
The graphs of y®=a" where n is a positive odd integers

greater than unity, have all a cusp at the origin, the praxis

L T 4 E 1 4 '\ ’
5 n3 s \.
A H "
L3 7 el
- T .‘~
¥, mr
v 4
rd 2l
°3
T Tey 1] 5
. 1 |
w A
1 A __:
F
m M
I N
[ AN |
.
H / =
1/ W
v
\F_é
11 u SRR _EI

IS RN .
NS TR T

PR
N . EREE g
& LT C

Fra. 74,

I
|
T T

o) ’uheing' the tangent there,
\\; © cusp. '
: II_. Y=x@-1x—2) or y= E/{{x~1)x~2)}
First draw the graph of :
h=o(@—1)§z=-2);

then Yi=4y, or y= Ty,
The graph of ¥ 18 shown in Fig. 72,

The graph of 42=g has not a
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If , i3 negative, y will be imaginary; hence we need
only consider the values of @ that correspond to the part of
the graph (Fig. 72) between =0 and =1 and the part
from #=2 onwards, We see ab onee that the rough form
of the graph consists of an oval lying' between #=0 and

- Ll | |
= i —H - T H
::.ia" — ! R

]
T Ny AR 7 \“\
e
TT \,
N
) ™
= n N
=4 - S PN
il \.
N\
L
0 ~ il IR N
11 ; Fi N
[ L |
= YA B
Ok e RS X
o "
o 1 i 1
mirie ‘I %r
| “L
[T ] - o u
i L1

HE gz RiEEaE

A | i

| T T T
o H T

. O F1a. 75.
z=] a'll‘i'win\f)pen branch from z=2 onwards. The curve

(Fig. 753’ now drawn from the following table:

—».A_

N OJ 01 f o5 | oo | 12| 22| 95| 3
w1 .
\ oalo | 017 10-375 o0 | ¢ | 0| 083|187l 6

—_— L - T

xy| o ‘ 041 ’ 061 | o2 |J ol o e 1-3-7[ 245

UL F=x(x—13 or y=4(x—-1)/x

It » is negative, y is imaginary. Let us take

y1=(m_ 1)\/‘13’
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and plot the part of the curve corresponding to ihis
equation. _ '

%, =0 when =0 and when #=1. When @ is a proper
fraction, ¥, is negative ; when @ is greater than unity, ¥, is
positive, and %, now steadily increases as x increases. Wga

give the table: ) N
, - _ KON
x ‘o ‘ ot | o3 | o5 | os ‘ 1 ‘ 12|15 ]| 2 ‘ 268
] - . T s | i
" ‘0}-0-28 ~038| —023| ~018| 0 | 022|061 1;41;.‘{»2-37;2’46
\ i _
? ~\.'
WEENY mamEEEy T
i [
T I y,
s e
- A
T :
i A i
| X -
A ¥
[ | i 1 R L |
- //_-"'"-... i
:$ r N )
T 1’%3 o 2 3
iR __
e i
o | N
'~~ | _ T ~\ —
N N\ [ i \\
N HH e
\:"\" T : : N -
S R N
O HRE
Fia. 76,

Plotting these points, we get the art O f Fip. 76
the part OA'BC" s the r’eﬂchion OfPOAB§?E J(o)he E-axis,
and may be obtained by plotting the points derived from
the above table by changing the sign of each ordinate.
The ¥-8x18 1s o tangoent. = o

It is obvious that as » increases from 0 to 1, o cannot
possibly become as large as unity; in fact, the table
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suggests that 04 will be an upper limit to the value of v.
The eurve, therefore, must have a loop such as 0454,

A point such as B, at which two branches of a curve
cross, g called a node.

The rough form of the graph may also be readily ob-
tained by first graphing y=u(z—1) by the methods of
$82 and then marking roughly the points whose ordinages .
are the square roots of the posifive ordinates of this gréph)

In the same way we sce from F ig. 73 that the grf’up‘h of
Y=tz —2) consists of the origin and an openbranch
from #=2 onwards. An isolated point, like the origin in
this case, whose coordinates satisfy the oquation of the
curve but in whose neighhourhood there Ja'ub other point
of the eurve ix called a conjugate point or dnMsolated point.

9.\

EXERCISES XX

Trace the rough forms of the wra I bf the following eguations,
platting a few choson points to give S8eme precision to the graphs

L g=ate-2 2 y=@H1E-1). 3 y=(++D1E-a).
L y=2s+1)(1-2). 5 oS +D(E—1). 6 y~z(e—10
1. g=2r+1), ANy =22 ), 9. y=—z(z+2%

0. y=atat ANy -D@-9). 12 y=et@@-1)
13. ;’]=$‘(-?»"+1)2(.7>\1\-§j: 14, y=2%x—-1) 16 y={xr-1¥x-2R

18, y=wla+ 1) 17. y=(z—1{e—2)(z-3)(z—4).
18 y=22ui0¥. 19, y=a-ss. 20.. y=at(z-1).
8. 1), 922, 4P=(z~1)(x—2)(z—3).

B~ 20 2. gmat(l-2) 2. pmsi-at

26 Trace in the same diagram the graphs of
N =z and =24

4 ¢\’ '3 .
\and derive from Four graphs those of

¥F=a and pi=oL
27, Trace the graphs of the following equations :
(Y =2 J(1—a2); S (L) e (=1
(iid) y = +X2azx+b1?) when =3 and b has the values —4, — 1
04 (%) ymafifo-Vo—2)1: () y= 2o~ De—3)};
(vi) y= 4+ {(z - 1}5 -2}
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CHAPTER XI. O
ROUGH GRAPHS OF RATIONAL FRAQTIONS,
'~ FREEDOM EQUATIONS~\N
84. Graph of y-——'g_—? Constmc@ ,t'%:fol]owing table:
) — A\
z 12 82— | 24 [ 1- 1-{:".‘:0 small €
T/—O é?—l-_ﬂ—_‘:’ ~o ¢ | —o —2—x—2approx.| -1
4 B ¢ DnE NHE 7 Note (i) M, ¥
_x_ : large : ‘ -2 ! ll.aﬂ.l'-i | 3
¥ ;\l-i-'i,fx Approx. ‘ —4,-'1 mi‘ 5| -1/2

OGBS Nowe (iiy 7 0 ¥ W
Frouptiiis table TFig. 77 has been drawn.
The,eutve is a byperbola. -

Note(i). Ifan approximation o the value of a numerieal
.fiﬂ}ction, say 237/1892, is wanted, we divide 237 by 1892,

Sgetting 0-1252... ) and we retain one or more of the first
WO tigures 01, 0419, 0-125,

A\ W
\;.

> according to the degree of
aceuracy required. In the given fraction the figures of
numerator and denominator are arvanged in the order
of importance ; thus 2 is the most important figure of the

t, but in the ‘denominator 2 is the
least important and comes last, In the fraction (2-gz /(i —1)
the numerator is, when # ig small, already arranged in the
order of importance of itg ferms, but the denominator musf_l
be written in the form — 142, so that the most important
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term —1 may come first. If we divide 2~z by — 1+, the
first few terms will give an approximation to the fraction
when @ is small.  In genera), when z is small the numerator
and denominator of a fraction, arranged in ascending

owers of z, will give by division an approximation to the
raction ; the process is called Ascending Continned Division.

Carrying out the division of 2—=» ' N

by —13—:—.1:%1,3 indicated at the side, "““”gigﬁ{"g‘f’f\&.\
we find as an approximation « \

&

?;:—2—513—932. f;::§:'}‘~
It wil! be seen that the cxact R
value of ¥ is : \/ 8
' i o il O
Y= —Zme—@t g

so that we can in any given case dbtgrmine the degree of
accuracy in the approximation.. . \J -

" 8

ARENENENEE SN R e AR |
M I | ] i | N
3| T [l

H ';-‘." H

Il
Il
1

7
O
]

T

AL

L

" & - T )
% .
\z s
N n [w:
n

L 1

Fre. 77.

The straight line y= —2—g ig the fangent to the gra,ph
ab L ; near I the graph must be below the straight line on
th sides of L, because —~2—x—«? is less than —2—a for
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enery small value of @, whether that value be positive or
negative, :
Note (il), When = is large we write the fraction in the
C =2
form — --+—,
e—1
the most important term may come first, and, if we now

so that both in numerafor and in denominator

- divide, the first few terms of the quotient will givesdn

.
N

N
%
\ )

approximation to the finction when @ 1s large. In tlis case
the division mnust usually be continued till one tepmy at least
of the quotient contains w in a denominator. ¥n general,
when @ is large the numerator and denominatof 6f a fraction, -
arranged 10 descending powers of x, will Bive by division
an approximation to the fraction; tlQ Jprocess is called
Descending Continued Division. iNY :

Carrying out the division as indf\:' eo1 ) w40 ( L1+l
cated at the side, we find that NV SN
Y ~h
= e - &Y i
Y 1 +x O s1-1
5 an approximation to fbhé fraetion N j
when « is large. A _ S

When z is posi-gm;{,
¢ \J 1
N y=—14o> -1

therefore, ~\'cir_'1"'l'3he far vight {FQ in the dia-gram) the graph
appeatg igthove the line M, whose ordinate is —1.
Whiotrs is negative, '

Q y= 141 <-1;

\“therefore, on the far left (RS in the diagram) the graph

appears below the line MA.

. . 1
The approximation y = — 1+ ﬁi shows that if & point travel

along the eurve pust P, then @ and so on, the point will

. come closer and closor to the straight line MY ; similarly.

i it travel past S, then R and so on. MY is ealled an
asymptote of the curve. DE is also an asymplote. The
‘_followm_g 18 the formal definifion of an asymptote.
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Definition. A straight line MN is said to be an asymptote
%o a branch of a curve which goes off to infinity, when the
distance of a variable point on the branch from the line MN
tends towards zere, as the point moves to an infinite distance
along the branch.

Cor, 1. The graph of m:k-y may be derived from the . N\
Z—x. . y—1 '
graph of ¥ == by interchanging the axes. Ko
‘\

(.,a, -2}

Cor. 2. The graph of y= {(a positiv e) m&y “be

derived from the graph of y-T by qubsti’tutmg the

abselggae «, 20, ebe, lor the abseissae 1, &te, and the
mdmatos t, 7<r ete, for 1, 2, ete. Inde@d the gmph of

.y—:— iy the graph of y= u(Za T') \eHuch in the ratio
1:a. IE @ were negative, what o 9111(1 be the relation of
the graph of y_@-u —%) to that of y—~-— ?

86. Graph of y_ i:j-i-‘i.

(1) Examine th‘e\)seros of the function. Put y=0;
then Q=nf—30?1+4
oo 07 0=@EDE-2R

%0 tlxz\éyEO when 2= —1 and when = +2. Mark 4, D
on th’e\ lagram (¥ig. 78).

A PN "

N When o= —1—,4=0—. Mark B roughly on the diagram.

When x= -1+, y=0+. » N » T,
W—hen_mx 2—, y:0+- " K 1 »
"Wheng= 24, ZJ:O_‘}'- . F 1 5

(2) Examine the appearance of the graph when @ i
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small.  If we start with equation (1), we must use Ascending
Continued Division, and we should obtain the form

-y:i;:3+m or y:i approx.
x!

m‘z
Whenz=0, y=co. . ~

Wheno=0—,y=+9. Mark Gl roughly on the diagram.
Whenz=0+,y=-+w. , KL N R,

I t ;?;;:___; ,, ) _:

- 13| - — 7 ‘: E il G

i w:t':%:,,_.- X

T x.':

x\ Fre. 78,

71
: & _ -
(3) Examin} ﬁe appearance of the graph when a s
large. N

¢/ . W5 B A
By Degeending Continued Division applied to %—’

We\.@;\?é y=x-3+§_
4 Draw the line Y =®-=3.
-\ When a is negative, y =(z—3)+. Mark ¥ roughly on
N\ ) the diagram_ ]
When o is

positive, y=(z~8)+. Mark Q) roughly on
the diagram.

(4) The trend of the graph is now apparent. To give
some precision to the graph, plot the points B, 8, T, U7, V, W.-

Draw a smooth line through the points 4 ... W,

All that needs to be written down s the following table:
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N )‘ small | Targe | —a l-2-3]3 1}3

ylolo- |0+ iﬂiﬂ-r!f)-;-m it _x—:%-r%—S-ﬁ

giving ) )

A B ¢ B EF GHELMNPQE 8§ T UTV W
in Fig, 78,

" Cor. In place of the numbers 1, 2, ete, on the axtan

Wl‘lt(" o, 2a, ete., and the graph will be that of O
:r, —Jax®+ 4(&3 ' :..',;
2 N
2
HIY i
KT :

i -
1
:
ot

% A . : n : -
& T, 1
N 86 Graph of y= - - (x—2)

\™ x+1HE—1)
The following table showq the general trend of the graph:

‘0 0— 0+!2 2

/N

24| 1 ‘ .l.-FE 1+|-1 —l--‘—1+ large

o | 13w

+‘O‘O—‘O+|m ‘+w‘--—w w | 4o
glvmg 0 4 B o0 b K VR - H K L Pg
OfI‘lg 70,
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- The plotted points

oz -4 | -3]-2l-0s 0»5\ 15 ‘ 3 ! 4

¥ | 213 | 281 | 593 E 1467 | 033 ‘ —036 ‘ 028 ‘ 043

give the graph as shown in Fig. 79. : O\
'N\S “
XE(X--2) R by
I S S A . < A\
o Gl oY - 7,
N
First draw the graph of “\
y 2 (@—2) )
CESVITI s o
as in Fip. 79, : O ‘
| 5 TR T -
! = SHIEE SIS
I; .
T = ! R
C e R e e e T ]
C Yo, g

bchggt?j: %!1 011;}? t= ti}_f!yl‘_ For real values of Y, Uy mush
- , 80 at the v
Botween 71 ond ¢ re 18 mo part of the graph of ¥
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 The trend of the graph is ca%ﬂy seen. The plotted
points

x-‘—ax 3 | -2 |~1al-05|o] o5 2| 8 | 4

7 | 913 | 281 | 533 | 1260 | 167 ‘ 0 ‘ o83 | o | oos | 043

i ‘IJ. 46|+ 168 j:2'31 !:I:S‘ﬁb +1'29%;t0i§:|:0'58 + 0|2 053 ]2 066 A

i ! e\

then give Tlg 80 O

88, Solution of Simultaneous Equations. The fgllowmg
example illustrates some methods of procedura, \

Ex. 8olve the simmltaneous equalions
Ao zy=2, e ) ?;3,9}3; 3 e voren2)

First, graph the equation u;:? —~zy=2 0P\ y;- a: - .7:

1 “‘

The table » | 0+ | O— E vik{hix}};e —large

y | = | + oo:.“'v T — &+

pives the trend of the gr agl\\the additional values

J«‘ o\\‘fos 1‘2‘ 3

‘t 516 ‘—17 —11 1 12.;3 i

41,

give the gkz;‘p]f as 1n T‘w 81. The asymptoles are given by the
equationgs= and a= . 3
Wq&aph the equa.tlon i ay=8 or ¥= '9“’5'

'\“\,F"le table ¥ | O+ ‘ 0- i +la,1-ge \ —large

x| e ‘ — ‘ %+ I —¥-

gives the trend of the crlaph the addltwnal va,lues

‘173

N
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give the graph as in Fig. 81. The asymptotes are given by the
equations y+r—0 and y=0. . . i .

The solutions, being the eoordinates of the points of intersection of
“the graphs, are therefoie

x| 2 -2 | 07 -7l
. ' Q
2 |1 ‘ -1 | -213| 218
_ Lo [ I — e e — ‘\
. <)
SR EARRaSNAn H D H aanbiayy <
i ; ...‘:,.x,\.v 1 Y i .’!;;.__;
HH PR HEr
P! rd
't oy - ” A
sais inu s i
| f - g . .
fl = _E__ =1
: S
HE i/ A
1 4 ] - : : M
FHH ; al -
3 D =T = - }ﬂi #1 2 WL
T . i AREERY -
T 14 ] ~ INE
! T 5t
i 7 aaes
i I F — -
Beisissiin ﬁ\ ; SN
R I N Y I : ‘ - . 1 .. _;
= . pd ] : o |
: e % SSait
EuENw HEHF N :
[ I - n: 4= FYEH
R R SiE

£ T | : = ¥
) ‘§ Fre. 81 '
S8 T we mulbiply equation (1) by 3 and equation (2) by 2, and then

¢\ “subtract, we get

) |

L B ~Bzg—9t=0 ‘or (3w+y)He—2)=0. ..ocecererran(3)
M’I‘hel mt_erseetlol_]s of Br+y=0, and either (1) or (9) give solutions.
50 the intersectiong of & —2y=0 (shown in diagram), and either (1)

or (2} give aolutions,. In fact - )
same as the solutiona of act; the solutions of (1) and (2) are the :

R L P
?31* _:‘; ;g and {.i:é‘gfg
ovof ¥ Hay=3 Witay=3
| 3a+y—0 2nd _x-—ﬂ:gjzo
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BXERCISES XXIIL

Trace the roagh graphs of the following equations, plotting a few
points Lo givy some pr colsion to the gra, ph'-,

! y=— L - g1
Loy=3 2 ;/__ & S y=roT LoyerTy
5 zy—a—y—-1=0, B, Zgy—ax-y+i=0 T x:f’_;.
. 2kl o ¥ o
Lo w=-— 1 N
= 8 Zaw—wty+2=0. O g=ldi. AN
1 s TaY
10. ;i)f=\’¢'+."(}- . 11, y=2-;a'—-$‘ 12, y's.zr—l—:'.B&F;ﬁ
o 2 1 Q@
18, y=-2u-—25 4. y=2+_3 . 15, Ki"g\_;&
1 - , 1 N\
16. *‘)‘_7"‘-‘1-:;) 17 y=.,‘-5"—:;5:3-- ) x']'\gﬂ.:y_xg-i__z_»ﬂ'
18, :f.f=-’rf3—];< 20, Is -23'-1-\-/9 =
2L '5«':2.-::.1_:3,_.._5, ) ) 2 (t_l)(? 9)
o ‘
’7P|‘0 vathat, in Tix. 22, =z +§;rs ‘Whe approximation when  is ]&rge.]
o L 2oL
“Gae-m T B 7= gp )
= () “\v.herg{(l\:r‘;}:}sitive, (il) when « is negative.
- . Ly _#lr—2) )
2 ¥= a1
L y=1¥y-3)
32, - S
- 8
33, ‘\W 4w =1
NN S R iy T

B
WY

.'35* [xf'lph on the same diagrant the following eguutions
’ \ » '

] 1 1
(i 3)"=i: (i) »* = (i) #* =

and use your gmphq to derive those of
1

(iv) at=—, (¥) #'= --—5 (vi) 2=
36, Graph the fol lowing pguations ;

z % 2 -3
=0 @ ety



#
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37.- Trace the form of the Conchoid from its equation
g B (b-cta)bde—a)
. y= (o — )
(i) when b<le, (i) when e (i1} when d>e
38, Trace the form of the Cissoid from its equation

g & N\
= . :
Yoog-x N o
39. Trace the form of the Witch of Agnesi from its equation\' N
_ . x(ef 454y =208 S
40. Boive the simultaneous equations : - N
(i) 47 Gy +3=0, D% —Gay=1; \
(i) dey=8y-"17, 224+3y=2; ~N

(i) 2% - my=3, (y+2¢~3)(y-2+1)=0y
(iv) ay=aty, s'+yf-20=2;
(V) sy=a+%y, 2+t -2 =4,V

80. Freedom Equations. I this article we show how &

curve may be drawn whom its freedom cquabions are
given. - N

L ' m;jlfit;a ¢
A 3 Y= 5"
~A 1+¢ 1+¢
First drawthe hs of 31__ £ __t
fv\ﬁhe graphs of » 117 and Y=i17# The

graphs i?_”ﬂfg: 82 were drawn by the methods of this
chaptePabeording to the following fable -

’t\“. —_—
\\.\‘ _3‘ +3 E +2 [ 1 ‘ 0‘_]&1‘@;3 ‘sma.ll

] ‘ 1t i— ¢

A rough graph of ¥, considered as a funetion of w, can
now be quickly drawn by-ebserving from the above graphs

how « and y stmultaneous] Vi ; I o to
+20. The graph in Fig, 83, showing the e iitem of 5

) Fig. 82, showing the variation of ¥ as
® varles, was drawn by noting the general trend of the
variation of ¢ as » varies, and plotting certain chosen
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points, shown in the diagram. The process is exhibited in

the subjoined table:

j‘!___.. T A 1= f I
RERapinss: + T - T
E};____ R : '/’ \\‘
N I N i i N
™ n ‘! - 1. o H 1 £2. '\
"“;g . raN
P at i -‘.“\ S
= i : Hvac
= ! - | H B - - EEEE|
| - fl) - e e
T P T 12H = EREtin
i = l
| HH
i il
T — J__"[ ; n
HT TR
H-H -A ¥ g '\\ 1L 1T
|+ o §vam ERRRRRAREr. (ymAKE T
; iR : !
NG SaEaaaaEae s ARARE LS ARRRRPEANRE ]
N \
Fre. 82
\
¢ | alledtt o | ine. to -3 | ine.te -2 | ino.to -17a ine. to ~1
|Té\— Lol L I PR S
“’.] N1 ‘ ine. to - 08 | ing. to —06 | ine. to ~0'61 | inc. o0
N \ 0- ‘Idec. 0 — 03 | dea. to — 04 | deo. to —0°43 | dee. to —0°5
4 i to B
¢ | ine tod [ ine. to 1 | inc. to +o8

T ‘ e, tol ‘ dee. to 0 ‘ dec. to=1

¥ | ine. Lol) ing. to 04 5‘ dcc. to 0

Bw(C CwD Dtod inFig 82
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IL. w=t(t—1), y=i(t+1), |
. The graph of z=t(t—1) is shown as a full line, and the ‘
graph of y=#(t+1) as a dotted line in the diagram of
Fig. 83 'The following table shows the trend of the
@, ¥ graph: ™\

ing. to }

|
E |- {mr‘ o —1 e, to —§|mc Lo ) inc, tol

ine, on -Pm

x|+ ‘ dec. L02| dec. to F |£1L(‘ tol du_ t0—% ine. tuO N

¥ +oo‘ dec. to |dec to —i ine. to 0 ine. Lo § |mc to"

- Adt0B BtoC Cto0 OtoD “13.\0;9 Eto P
in Fig, 83.

\,

LHH _::::Jﬂf::'

Ex. 1. Express the freedom cynalions

Z=i(t=1), y=t(t+1)

as g OO}JQLEI aint eguation in #, 4.
¥ subtraction we have y - x= 2z, and therefore ¢=1(y—- )., Sub-
atltutmg {3 —x) for ¢ in the firgt equatlon we gat 2@ -
P ks (y »

2 T*]) or 4% =%y +2 - 23 — Iy =0.



$ 8] ' ELIMINATION. 217

This process is called elimination, znd we are said to have eliminated
¢ between the two given equations.
TEx. 2. Find the puints of intersection of the graphs specified by
the equations D a=i(e—1), g=E41) e (1)
) =14w, F=4+2% .. (2}
We require that the sguations
' FE— 1T 3%, cornrecreerneiensrrineies

: I D=4 R DU, cvreieiiieie e [N
shonid hold simultaneously. _ O ’
From (3) and (4) 2t=3+u or u=2t-3, Ao

Hence, from (3}, ' : .( N
(1 =1)=2:-2, e 2-3+2=0, fe i=1or 20
Hence, from (1), z=00or2, ¥=2or6, e
20 that the pointz of intersection are (0, 2) and (2, 6» \
Note. 'We might have expressed cquations (1)::3.1&1“(2) a8 constraint
equations, viz ’ W
22— 2y 7t — 2 = By =GN e (L'}
: 2 — g+ 20 s crisssrisnrereressreena 2
and then solved (1') and {27 as simultagedus equations. ]
Freedom oqualions should be translated into constraint equations,
if the latter can he readily found dndhandled.

Ex. 3. Provec that the constraint equation of the graph specified by

L INF
i7, SR A R
are (-8, 08) &nd (— 06, 04), and that the corrcsponding values of
are §, %"Q}J’Of #, £ and 1, )
Ex35. Tf == Froos o,y = Vesin e— 4ge?, where V, o, gare constants,
drag the graphs of 2 and y considersd as functions of ¢ and then

W2 f
e YT
is \\ a4 4yP=1.
Ex. 4. Prove thatthe coordinates of the points of intersection of

and g=—-2+%4, y=i-du

<\q1‘3'w the graph of y considered as a function of . The values of ¢

may be restricted to the range from ¢=0 o ¢=2Fsinn/g. Find also
the constraint equation of the curve.

EXERCISES XXIV.

L. Draw the graph showing the yariation of ¥ a8 @ varies when
x=(t-1)(-2), y==
What is the constraint equation of the graph?
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2, "Draw to , % axes the graph of
e=(#—1), y=t{+1)

making the form near the origin qu1te clear, What is the constraint
equation of the graph ?

3. Trace the graphs of

o\
(i) #=(-1)(-8), y=t(c-2); g \
(i) e=i(t-2),  y=a-1, ;’\‘:\
4. Trace the graph of - \ Dot
=5 =g >’
What is the constraint cquation of the graph\
5. Trace the graph of : \\ g
2=(i4+ 10, ~z(z+“1})2'
and nd the constraint equation. N
6. Lrace the graph of ‘M}w
—q@lﬁ;
and find the consbraint equ‘s‘m’s‘h
7. Trace the graph of\
. 3¢ 3

‘; e i
and find the ggn%ﬁai ut equation,

8. Trace. ﬁhe?gmph of

\s\', .ﬂ‘?tﬂ——}-i kg :—vzz

e

andﬁ,&d the conatramb eq uation.
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CITAPTER XIIL A

IRRATIONAL FUNCTIONS. \ o7

. N\

90. Graph of y=x—14+2/(x—2). In § 83,’2’,87 some

equations of the form g?=f(x} were discu.s“s%l; in this

chapter we shall show how the general $hape of curves
given by equations of the form AN

y=ax+b4 Jfl®) or (¥ —‘aﬁ}jb}z =f(x)
may be obtained when f(x) is of & stmple type. We begin

with the equation o0 _
y=x-“1if2\/(x—2),.............._ ....... (1)
which may be expressed_ifrthe forms
‘(yn-’{} +1P=4(z—2),
P2y + 4 — 62y +9=0. e)

From equation\{2), by arranging it in powers of ¥ and
solving the)qWddratic so obtained in terms of o, we derive
equation £1) _ '.
Firstedyaw the graph of y, =1, the line AG in Fig. 84.
Forxéal values of 7, the values of @ must be equal to or
greater than 2. Mark on the line A@ the points 4, B, €,
AN F.(F, ..., whose abscissae are 2,3, 4, 5,6,7,8,...; then
“\the table
\

> 934'5J6_'?!8

£20(0-2) | 20 | 22 | 283 | 2348 04 | 447 | £490

A Bb o Dd B ¥ Gy
BY ¢ D& E Ff GY
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' givﬁhé points 4, and ¥, ¢ and ¢, ... on the curve by

e following rule. Bb and BV, Cc and O¢,... are steli;s_
E\Ir]hose me&su%es are +2and -2, 4+ 283 and —2'83, ..., these
numbers being obtained from the second row and frc:m t-hg _
same column as contains the steps; thus, Bb=--2 an
BY= 2. 'To plot the point b move 2 units upwards frai,

pu 1

1
i

=]

U

NN N
]
Ty
|
Il

T[T

m| e

”_';:E!)_F:;e 2 'EZ%I’
||

L]
IR

i

units downwards from #, and
0 on. The two steps from 4 are both zero, €0 that 4
itself is on the curve, -

Note (1) that #=2 i
on the eurve; (ii) th
parallel to the y-axis

The curve iy g,
parabola,

PIIT

Fre. 84

S the tangent at the point (2, 1)
at the line =21 hisects all chords

parabols and AR is a « dismeter ” of the
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91. Guph of y=1-1+/{x-DE+1} If y is-teal,

the product (2—2)(:x+1) must be positive or xero. The

vraph of (@—2)(z+1) is & festoon eutting X'0X, where

z= —1 and where =2, and therefore @ cannof lie between

—1 . and 2 (A very rough sketch of the. graph of |

(x—2)(e+1) or a mental picturc will show at onec that

the ordinate is negative for values of = between —1 and 2) )
Draw the graph of ¥, :z—- 1, the line HD in Fig.(85.

Mark on HD the points 4, B, G, D, ... B, ¥, G, H, ..\ whose

ahacissac are 2, 8,4, 5,... —1, =2, —3, —4,.... ‘\Then the

table Q

RN
i) 1 :‘—x:}\\a_ﬂ‘ —3 -4

24 \&

r 2 ‘ 3 4

I
e i i Y j
+\(E - D) +T) i0|i2'ji3‘16%ﬂ: 10 +Q‘i3‘16 424

A Bb (e Dd\... Fe Ff Gy Hk
by LY ':I’Jrl’" ... Ee Ffr Gy HY
gives the points 4, b ang}-:’fﬁ’; ¢ and ¢,... on the curve
(Fig. 85). N
The equation may be written in the forms
i) N2
(L) =e-D@+),

V55 Ry — 16y° — 80— 32y =48 =05 ..vceeen (1)
from the seepnd of these forms the given equation may be
derived ¢hy arranging it as. a quadratic in ¥ and then
solving\or 4 interms of . T ) :

Nete () that © = — 1 is the tangent at the point (=1 —%
- it 5=2 the tangent at the point (2, —1): (i1} that
v 22-1 bisects all chords of the curve parallel fo the

y-axis. The curve is a hyperbola and HD is a “ diameter ”
of the hyperbola. ' )

The expression on the left side of equation (1) may
by a factorising process be written

(52— 4y —6)(3e-+ 4y +2)—36;
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hence the equation of the hyperbola may be expressed in

the form S Ay (Bt Ay +2) =36 @
The asymptotes of the curve are the lnes |
L se—dy—6=0, 3z+dy+3=0; ~
" they. are shown in the diagram. O\

man i
ak ¥
AN [
| N T
I TS, £
] ._
H; AEESES = B
Ly T T
X = , ¥, = {3
= br -} H——
I A Y -

I; I
|
&
T4
I
1
T
¢
LT
T
T
AR
1
I
T
il

>
{ >
LT

3
I

Hi

i 1 P Iy
1T L1 1 -

Fia. &

A

92. Graph ofyzg—liJ{(x +2)(6—x)}. If g is real, the

product (+2)(6 ~x) must be positive or zero, The graph
of (£+2)(6—2) is an inverted festoon cutting the @-axis

at = —2 und @=6, and thercfore % must lic between —2
and 6,

Draw the graph of y; =31, the line 4K in Tig. 86.
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Mark on AK the points 4, B, & D, K, ... K, whose
abselssae are —2, —1, 0,1, 2,... 6. Then the table

o —a] -1} o 1ol s 4 s ‘fi

_'—-\-"'(J.'_-I—2)(G—-;ic')!::t0%+2'65 046 |+ 357 [+ 4| 387 4 346 i—f’Z'Gf)ji—O
4 Bb Ce Dd Ee F;C“ Gy Hh s
BY Cf Da E Fr Gf HE N\

'\
sives the points 4, b and ¥, ¢ and ¢, ... on the curve. | ™
The equation may be writhen in the forms N

(y-5+1) =rni6-n) O

5 — dipyy + 4oyt — 202 4 8y — 44.,=§Q.; _

T ]
S |
1

<
T T b [N
""#ﬁ’ H

L]

L

I EEEEENENEREN]

-0

1 i
¥ N e
I
AT O <
AR L i
- s ) B H
R P40 i ran FH
[ L e = -
i - AN —
B = ]

I
g

HHHn
Fre. 86

Note (i) that #= — 2 is the tangent at the point (—2, —2)

and = 6 the tangent at the point (6, 2); (11) that v = Q-—l

bisects all chords of the curve parallel to the 'y-a.xis.l The:
curve is an ellipse and AJ is a “diameter ” of the ellipse,
G.Ag, b1
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93. Graph of y=g—1i\/(x2+x+1). If y isreal, a4 41

must be positive or zero. The graph of #4241 is a

festoon which does not eut the x-axis, and therefore y i
real for every value of .

TT o T 11 \
053 : MR AT
o i . REHIEG | N
= TR L £ )
. 2N
£\
\
- x| 7%
: {
T i ¥ 3
It = =
S e
. EiHidE
: :
D -
= -
1 ey
. ;:ﬁl. o
H il
AT =
HH -
g :‘ .
. P HEEt
e T
\ 2 T | i -
X PR T R
g, 87,

'.'\"“
DI@W the graph of 4 Vl:g'—l the line AF in IMig. 87;

\qirvme y 18 veal for every value of @ the curve extends in
o branches from left to right, one above AF and the

Mark on AF the points 4, B, ¢, D, E F, whose a'bsmssae
are -3, -2, —-1,0,1, 2. Then the table

& -3 -2 |-1| 0 1 2

L +1) | 2265 |+178 ] L1 41

TR L2865

da  Bb o Dd Ee @ Ff
. _ do’  BY ¢ Dd' - B FF
gives the points o and &', b and ¥, ... on the curve.
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The squation may be written in the forme
(\y—g—i— 1>2=::;2+:r:+1,
32 vy — A2 Sm— 8y =0, errrre QO

Note that ""E —1 bisects all chords of the eurve parallel

to the - axia The curve is a hyperbola and AF is s» \
“diameter ” of the hyperbola. ¢

Equation (1) way by a factorising process be expiégsed
in the form

(3w =2y —1)z+2y+3)= -3 w'\’\’
The asymptotes of the hyperbola are the Tinies”
Be—2y—1=0, x4+2y— 3;?@‘;’
these linos are shown in the dia-gra-m.‘ ,} N

94. Graph of y= x—i—,\/ (—:1> {f’If“i; is real, © must not

ad

lic between 1 and 2, &Y
Draw the graphs of the two equations

12D

then Y \ 1;—y1+yg,

and any ordif -'Jtte of the curve is obtained by adding

(rﬂmbral"a}l\) the corresponding ordinates ¥ and 3, A

sketch ollé;ﬁf eurve is shown in Iig. 88
Som\nﬁ the details of the graph were obtained as follows:
(1}\56 large. By Descending Continued Division

\, e—1_ 1
)  popTlagepox
and by the ordinary process of extracting the square root

/ 1 1
,\If (1 +_r> =14 9 approx.

Hence, y=g+ J(i%é) =3~,i(1—|— :}s) APpProx.



226 ANALYTICAL GEOMETRY.

[cH. x11,

The lines y=z+1 and y=x—1 are asymptotes; the
graph appears above y=x+1 to the far right and below
to the far left, but appears below y=2—1 to the far right

and ahove to the far left.
(2) y=0 when 0=z \/ (f%), that is, when

Pe—-2=r-1 or PF—22—x+1=0.

7°%&
B4

Fre, #48,

NS
£\

the points where the curve crosses the x-axis,

Q!

£ 2
28

"
L 3 N

N\, . .
A", This equation may be solved graphically (sec Chap. XV.);
3 its roots arc approximately — (80, 0:55, 225, These give

13) The following table gives a number of points:

x‘_g‘“]‘ﬁ 1221 (22 |5 |4
~113|-018|2071] 1 || 55| ss| 2a1l o
y [TLL-0 2| a65|441] 592
Bkl —w| - 192|025 | 159 | 278
S el ] DO O
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EXERCISES XXV.
1, Graph the equations:
(b y=atafr; (i) y:%i—v’(x+1}; (iil) {4y —2)P=16(x—2);
(iv) da? - 12y +0pP=du; (v) & —Zay+5°— w+4y—3=0.

2, Graph the equation y=2-122/{(x-2)(x+1);. What are
the asymptotes of the curve?
3. Graph the eqnation y=z—1+2/{(#+2){6—=a}}.

the y-axis; (ii) of the diameter that Lisects chords parallel vo the'e-d¥is.
4, Graph the eguation N 3
8o Loy — B+ 4e—12y - 13=0. ¥
Find (i) the equation of the diameter that bisectsehords parallel to
the y-axia; (i) the equution of the diameter thatbisects cherds
parallel to the -axis ; {ifi) the equations of the :aag}vsiptotes.
5. Graph the cquation _ A\
102 — By + By -+ 2 — OY=E =0,
Find the equation of the dismeter that bisects chords (i} parallel to
the g-axis; (i) parallel to the saxis BN )
For what values of y are the valyes of  equal, and what is the
naturs of the corresponding poiuls on the curve? -
8, What valnes of y rri.ve"équal values of a in the fellowing

witi 3 4
equations !y 5o g Ny 82— 8y =0

(i) 5 ;'2€4§§y+41_y2-20$+&y—44=0.
Graph the equntions!
7. Draw t-he‘efgr\tes given by the following equaions :
() 4R EIPLa6: (i) 4P Qy=06; (i) 47-8F= 365
N P [
(iv) 5%*1-{—)@21 s omS-h-1 60 e Rt
B Eﬁlllp]ify the following equations by change of axes (§§ 45, 49),
anfhthen graph the cquations :

\:\ ) (i) 2?42+ 2y —dy=13; (ii) «*+ 22— 2P +dy=17;

\ }

Gi) 4{ZHY po( 22 ) ~a65 (i) Aokl —Slo-aP =12
L — 3 r 3J
(V) 4(-3"1'3’)2—.9(.‘3:—@)2: -52. (Vi) ('M'Tzféi]:k—i_g%@y_)zzl;
(i) (o= 2y + 1P +@o by +1P=5
(vill) d(z— 2y + 1P+ 204y +1)'=20;
(%) (# -2y +1 —4(2w+7+1) =203
@) (z-2+ 12— 4@rt+y+17=—-20.

N
A o
e\ .

Find the equation (i) of {he diameber that hisects chords paralielto ’
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9, Graph the following equations :
@) (-of=i ) @oafmr®s () wd (- Dlr-2);

(@) y=oa (- V=De-3} &) y=r+24/( 771

(Vi) = a2 \J’.'i:‘ s (\;ii) 7 =it ?.‘?,'S

(Vi) y=at£r—a¥)., /\

10, Holve the following simultanecus eguations, aud xelz b g
solutions by graphs :

N triore et S O N
|3 (4 Yy~ ey =D + By, Y

/\\\
sy [ —Bay 4 %= 20 — 4y \ 3
) \2a sy 4 22 =tn. 0>

e Ao\
a (Gl HER

e

*

&

W\ 3
S
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CH. XIIT, § 93]

CHAPTER XIIL RS

SUCCESSTVE APPROXIMATIONS. ~\ .
05, Change of Originn Ii Swf, #eny are 1 étﬁngular
axes, parallel respectively to X'0X, Y'OXJip) has been
shown (§48) that the coordinates @, ¥ of\ahy point F,
referred to the axes through O, are qonﬁ?cted with the
coordinates £ 5 of P, referred to- the.a%ts through w, by
the equations P \4
p=h+8& y=k+y...{1) Esw—h, n=y—k...(2);
where J, k are the coordinatégdof. the new origin w with
reference to the axes thraigh 0. An equation can often
be simplified by change~of origin, and we shall show
this chapter how a change of orl gin-enables us to obtain
more accurate gr %1‘1@3 with “comparatively little labour.
The following exe}rip es should be earefully noted.
_Ex, 1. Show .ﬁh’;t‘b"t-he equation ya=ax?br+e may by change of
origin be reduédd to the form 7= .
By the pegaess of *completing the square,” we find that the given
eqllﬁnt-iOKﬁibly'be put in the form
.\o\ :’ ‘ 6 @ '62_4(16 62-423_. (” i\ﬂ-‘
M’ ?;’—fa(.?.-—‘l—é&) - el or 3';-{-'-—4{"r =da "'+2a.)
ke ?i —-5 2 +b?v__@_7 and we gek n:aég. If we write
A A PR .

\ the equations of transformation in the form

b b —4dae

e e L T
=gy te 40t H:

and evmpare with equations (13, we see that the coordinates Ay & of the
Bew oligiu are b B ;im: @
k=-—ﬁ, = e
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The graph of n=af?is clearly the same eurve as the graph of y=uzt
if both curves arve plotted to the sume scales. Ilence the graph of
y=ax*+brte is identical with the graph of y=as? oxcept that it
oceupies a diffevent position with respect to the axes X0, 107
"The shape of the curve therefore depends solely on the constant .

The graph of y=az? iz a parabola (§ 77), and the y-nxiz is called
the axis of the parabola. When o is positive the origin is the lowests
point, ahd when e is negative the highest point of the corvey
thiz point is called the vertex of the parabola, 'The graph, of
y=ax'+be+¢ is therefore a parabola, and when the equati¢nwhas
been reduced to the form p=qf? the wow origin is the edrtex;
equations (3) give the coordinates of the vertex referrad o the axes
XOoX, Yyor. - 'Q

When « is positive the curve is often called 4 * festoom,” and when
& is nepative an “inverted festoon,” 1t should he Stlidroughly fixed
in the student’s memory that the eurve iy u festooh or an inverted
festoon according ag e is positive or negative.

Ex. 2. Show that (z—1}(z—9) is positi\{c\ét"negative according as
# does nob or does lie between 1 and 2. L €

The graph of (x-1)}{x—2) iz a festoon‘\hﬁch cuts the s-axis where
#=1and where =9 ; and therefore ¢he rdinate is negative botwesn
theso two points, but positive if the #°0f the point is not between 1

g

and 2.

Ex, 3. Show that a(r—1)@o'2) is negative when » Hes between
1 and 2 and « is positive, butspositive for the same range of » when
& 18 negative. N
If @ 1z positive the cury® is a festoon, but if o is negative the corve
18 an inverted festog]g';:?ﬂd the results follow as in Ezample 2.

Ex. 4. If thelguols a, 8 of the equation ax?+ba+e=0 are real
aud unequal, show that, when o is positive, the expression ax® - brto
1s positive o ‘megative according as » does not or does lie between
o and 8, batdwhen « is negative the expression Iz positive or negative
according(ad e does or docs not e between o and B.

Whgn‘ Is positive, the curve is a festoon which cuts the a-axis
whete ¥ =o. and where =0 ; when « js Legative, the curve is an
in 6d festoon which cuts the s-axis at the same two points,

~N Ex. 8. Bhow that 22+ 24 1 is positive for every real value of =
% The roots of s¥+24+1=0 are Inaginary ; therefore the graph of
b+ a+1 does nob cross or meet the r-axis, once the ordinate has
always the same sign ; when £=0 the ordinate— 1, so that the ordinate
is always positive,
~ Ex. 6. Bhow that
imaginary, the expre
& 0r re,

The graph does neb erogs the e-axis, so that the ordinate has always
the same sign; to find the sign, put #=0. When the roots are
lmaginary, « and c have the same sign.’

if_ Lhe roots of the equation me?+ bt e=0 are
SEI0L er”+he+e has always the same sign as
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Ex. 7. 1f @, &, ¢ are in ascending order of magnitude, prove that
one of the roots of the equation :
1,1 1
veatzbte—e

lies bebween « and &, and the other between b and e,

Fx. 8 Find the necessary and sufficlent conditions that as®+ 2bx ¢
should have (i) tho positive sipn, (ii) the negative sign, whatever the

value of
¢\

96. Shape of a Graph near a giver Point on it. In thi3
and following arbicles we shall show how to obtain rapidly
the shape of a graph in the neighbourhooed of any given
polnt on it; we begin with the graph of a fuadratic
tunction, * ¥

Let it be required to examine the shape Qf‘ the graph of

y=at—2 €
near the ovigin, which is obviously a ydidt on the graph.

I A
Y NN ||
T o

A L 3 jf

_‘.?}ﬁ\\ ] ]
W ,
MO [~ N = ¥

¢ = K
O AN 1]

A i1
'§" Fie. 8. .

.\\HG;mHSE cxamine the relative importance of the terms
~afand — 2% when @ is a small positive or pegative fraction.
\AOoW when ¢ is small, say 17108, a? is 1/105, which is much

swnaller; the error in taking -2 instead of zf—x ag the
value of 4 is 1/105, or just a little more than 01 per cent,
of the true value of 4. ~ When » is 1/10* the error m taking
=2 instead of a2— is 1/109, or about 001 per cent. of the
true value; and so on. Now draw the straight Iine 04
(Fig. 89), which is the graph of y= —&%

E.A.0G, . 9
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Near the origin the graph of #=2®—z must lic close to
Q'0Q, but does not comeide with OG; the only point
these two graphs have in common is 0. Further,

af—@ = —p+a®="—x+(positive quantity),

whether ¢ i3 positive or ncgative. Hence P'OP, the graph™
of y=u22—ux near O, is derived from @0, the graph o
y= —a, by drawing throngh O a curved line close 10 \@0O¢
and above it on both sides of 0, as in Fig. 80.CIn the
figure, if OM =2, Q= —z, QP =42 QP being therefore a
positive step, then {§3) e \ R

if OM'=¢, MQ'=—u, QP =02 (P\bing like QP a

positive step, then AN
WP = ﬂI’Q'-{- Q; ’:’\—L:c +LE-2.
The equalion y=—x is the glgsést approximation of the

first degree to the equation ¢ =~z 4af, where # 1s simall,
and is called the firsb approximation mear the origin.  For
the sake of distinction, shigdy of the first approximation is
often called iy, 50 thaily, = — 2 is then written ag the first
approximation to ya— x4

The Tangent ot 3he Origin.  Of all straight lines which
pass through Qi ¥ho line y = —, which is the graph of the
first approximation to y=—ux+4x% lics closest to the curve:
this linc ig {he tangent at O o the eurve. .

We thgsee that ncar O the curve is a part of a festoon;
the carve 18 concave upwards,
' .I.f\we want now to examine the shape mear any other
}Qurt, say the point (1, 0), we shift the origin to this poind

\BY putting 1+4¢ for  and 5 for v, and then find the first
NS approximation near the new origin,  We thus have

D7 =4 -(4H=i .
The first approximation is y=¢, and the curve p'wp lies,
near w, above the straight line g'wg, which is the graph of

ThE:‘ equation of the tangent at o, referred to the now
axes, 18 y=¢; to find the equation referred to the old axes,
. We must, put #—1 for £and ¥ for 5. Thus the equation of
the tangent at (1, 0) to the graph of y=at—gis y=w—1
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Tt i easy now to form a mental picbure of the shape
near the origin of the graph of the equation '

1y = et + bar.

The first approximation, which represents the tangent at
the origin, is 9, =bx; the tungent has a right-hand vpward
slope if b 1u positive (like g'wg), but a right-hand downward
slope if b is negative (like Q0G). II o is positive the)
curve lies aboe the tangent, bub it « is negative the outve:
lies heloie the tangent. A

To make himself quite familiar with the sHape, the
student should diaw the graph for different pigitive and
negative values of ¢ and b, for example foy 6h6 values +1,
+9 +£8 of ¢ and b

~NY;
Ex. 1. Draw Lhe graph of y=a¥ - x near Q}i;a)oiut {3, 6), and show
that the equation of the langent at the polfty
¥= s —8.0

Putting 3+& for @ and 6+9 fony, “we shift the origin to the

point (3, 6). The cquation bocowgs™S :
61y=(E+3) - (E3) or 7= 5&+E2

The tangent at the new origin is #="5, and the curve lice above
the tangent near the new gffigin. ‘To retorn to the old axes, put #—3
for & and #—6 for s vy,e"tl;lus get

; L\EB.: 5{(n—3) or y=iz—9

as the equation ofith\tungent at {3, 6).

Ex 2, Draypthe graphs of the follewing eguations near the points
indicated, aud\find the cquations of the tangonts at these points
() 7= 5 point (2, 2); (i) y=(z - 2)(#—3); points 2 0) (3,0)3

{iids 13(# - 2); points (3, 2}, (-1, 6);
('il# w?—3r+1; point (2, 3);
A y=(s—1)(x—2)(z—3); points (1, 0); (3, O)-
4 0\ 3 . N

:; -/ 97. Point of Teflexion, Consider the graph of the equation
9= xd =i,

Near the origin the first approximation s y=—%& 16
presented by (YOf) of Fig. 90. The graph of y=2"—2
near 0 lies elose to (/06

Whe_u x is positive, we have

Y= —x+ad = —x+(positive quantity);
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but when % is negative we have, since z° 1s now negative,
y= —z+4a® = —z-k(negative quantity)
= —x—(positive quantity).

Hence FP'OP, the graph of of—a near the origin, is
derived from @'0Q by drawing a curved line close to QOGN
above it to the right of O and below it to the left as, \in

£ N

] [T 1T 1] £\
e IYJ’) | | $ Ny
1 N
a ‘.,’ >
s
Pl S
TESR
) NN AEDS
g [
——| ".“h‘“
[ R
' A 90,

Fig. 90. In the figure\it 0=z MQ= —z, QP=2 QP
being a positive steg"since x is positive, then
) .\J./ZPzMQ-l-QPz —?;
it OM'=w, H'¥=—z, QP =o3 Q'F being now a negative
step since #\gnegative, then
\g‘ MP=MNG+QP=—otid
POP touches QO at O and also crosses QOQ at O.
TQQ “origin 18 & Point of Inflexion on the graph of y=a"—%
2o the tangent y= — is an inflexional tangent (5 77)-
3% The student should now work the following examples s0

W as to refognise at onco the shape of a curve near a poinb of
inflexion.

/N

Ex. 1. Draw t'}]?' graphs near the origin of
‘(1) y=2*-%; (i) y=a+a; (i) y=2%4+2¢;
(iv) y=o—a; () y=20-2; (i) y=—2~5;
{vil) y=ms®Fba '

@ I*(l}); 2. Draw the gf'agph of g=(x-1){x-2){x—3) near the point

\
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Ex. 3. Show that (I, 4) is 5 point of inflexion on the graph of
g~ =3x8 4 Bx 41, and that y=22+2 iz the equation of the inflexional
tangent,

Ex. 4 Draw the graph of y=# — 2% near the origin.

- 08, The Polynomial for Small Values of x.- Let the poly-
nomial be written in aseending powers of @; the equation,

ia thus of the form <\
y=a+br e +dadFeat it f.}.fl)
Take a definite example, say ' L3O
y=58+2x—3ut+dad 42zt LY (2)

When =0, y="5; without actually shiftiﬁgf the origin
to the point (0, ), we can sce that the ﬁ}'bixapproxima-tion*
to equation (2) when w is smallis (& :

1st app. =B 2 AN e (3)

The ervor in this approximation is — 3a®+ 4w+ 20t; the
ratio of the crror to the termqn™ that has been retained 1s

Y VRN P U T S _
i +fq-"-j:—%4,‘~tha.t is, ——?a:+2rng+m3.
2 . 2 :
_ The ervor is thergfgre small compared with 2z when
15 small. "\ :

To find a seepnd approximation wo retain the term — 8u?,
and write, der&uting by %, the second approximation,

Znd c],pp\“ > 4, =54 2 — Bxt=y,— B i (4)
Th\fi‘r%ir in this approximation is da3 4 204 ; the ratio of

the gxor to the last term refained, namely — 347 is
R da® 4 Qoct .42,
- \} ) aE that is, ~35® 3%"

\ The error is therefore small compa-red with —32% when

2 is smagll.

*For small values of # the value of y is nearly 5, and we might therefore
Say that y=§ is the firet approximation ; but for our purposes we need
approximetions that contain . 1 we shift the origin to (0, 3) by putting

lf_qr % and f+4 for.y, the first approximabion at the mew origin is
PWiously n=2¢  (joing back to the old origin by putting x for £ and
Y-8 fory, wo get y— 6= 2w or y=>5+ 2w, which is equation (3)



?
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We can now sce what the shape of the vurve is ncar the
point (0, 5); sce ¥ig. 91 4 is the poinl (U, 5); BAC s
the graph of the first approximation and is the tangent at
A; DAE is the graph of the second approximation which
is part of an inverted festoon and is convex upwards, lying
below BAC on both sides of A.

Close to A the graph of (2) cannot differ much from
DAE; the difference EC, for example, between the ‘orfli-
nates of (' and F, when « is the abscissa of each oint, is
34* and, as we have seen, the sum of tle termssik{2) that
follow —3¢? is small compared with 32? when's s small.
The corresponding point on the graph of (4)&uitst thercefore
lie below ¢ close to E. \Y%

M E ' N
SN
- D &
EE s,” I;’C
ZE 0 8 m.
27 CTAR
i & ' / .
=7 i”\ . {

- L J 4 3
e i/t N
[0 10T 7 05
‘\' / ..‘1“1(;. 91, Fra. 99,

- Copsider now a case in which equation (1) contains no
- 3 2 . . N .
tergiyin «% but does contain a term in @®; that is, =0,

gl & Take for instance
\ _ Y=0+2e 444225 L (5)

N\
P
N

\ 3

Near (0, 5) the first approzimation is the same as before;
but there is now no term in 22 to give us an approxination
of the second degree in a—no second approximation.
The graph of (5) must therefore, near A4, lie much closer
to BAC than DAK does, Denoting by y, the approxima-
tion to (5), which contains the term in a5, and calling this
the third approximation, we have :

Srdapp.  y=542Zutdaf=y +408 (6
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The error is here 2z% and is small compared Wlth 4a?
when  is small.

In this ease A is a point of inflexion (Fig. 92), and BAC
is an inflexional tangent. |

It in (1) ¢=0, d= 0 2=]=0, then the graph of (1) near 4
resembles DAL (Fig. .)1) but it lies much closer to BAC
than DAE does, If ¢=0, d=0, ¢=0, f4=0, the graph near

A resembles FA G (Fig. 92), but, it lies much eloser to BA( b O |

which is an inflexional tangent,

's,,.

Ex. Ezamine the shape of the eurves given by the fuifowmg
equd,tu)ns aear the points where they cross the y-axis.

(i y=7 —det2?-22; (i) y=T- 4:%‘-1—!)’1"‘\
(iil) =7 —tw+ad—2ot; (1v) y=T 4o D

$9. The Rational Fraction for Small Va}%@of x. We shall
now consider a fractional function, say< )

First arramge numerabor and den()mmafsor in ascending
powers of @ and divide, contmumg the division as far, say, -
as the term of the quo‘m{ht in o*. The integral quotient 1s

\"3 2 A 4Bl ad,
and the rema,mdt.r i —(4at42°), so that

Aottt
¢ —a__ 4 a2 3
:t\.my—?y 4:1;—}—39; 4ad— ]_—|-s,_+x2
O =3—dutd+t— R,

N\
vxhue'\ B={tat 4/ (1+a+a”)
Wen 2= 0, 7=3, and near the point (0, 3) on the graph
:‘Of (1) is small From the value of R, we have
R 4x+m2
@ 14z+et
W hm & 19 small, the numerator of the fraction is small,
and the denominator differs but little from unity; hence
When x is small, R is small compured with o Proceeding
as before, wo ﬁnd ﬁppl‘OKlH!ﬂ:thﬂb :
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1st app. =3 — k. (@40, Fig. 93)
2nd app. o= 3 — w4 322 _

=1, +3xk (AP, Fig. 93)
Brd app. iy, =3—da {3zt +a®

| =y .

The 3rd approximation is not shown in the diagragiyit
could hardly be distinguished ffom’ the
second. N

1 Thus, near the point (0,/3)\he graph

i Jd  of (1) is & curved ling.SMch touches

the line ¥, =3—42 agdd\lies above it on

both sides of the poiig:.

It is easy now,téyeéxamine the shape
of a curve ne&‘r‘é\n’y given point on it;
if the point i8\¥, k), we have the rule
3 Rule. Shift the ovigin fo the point
1] _ (h, &) bssputting h+ € for o and b4y
' P Jfor iy then eramine the shape of the
. curve, mow given by the mew cgua-

thon, near the new origin by the above
Ornethon.

A\ : .
Fie, 93 S In next seclion we consider the form
RS of a graph for large values of .

|t

1]
e v =

\ N/
Ex. 1 (Use Ascending Continued Division to find approximations
to thefft lowing cquations for small values of KA ana graph the
eqkﬁtuﬁm for such values.

.\‘\- L .. _ 2 . o1 )
, \ (1) ."')""x_ 1’ (11.) = z-1°* (m) ‘yz(‘r_ﬁ)ﬂ(‘w: 3) :
o _f—.ﬁ‘_—i—l . N dF—Bpt] . wtd
M r=miayi Or=py Dy—m g
s -9
{vii}) =%
B i i 21
Ex. 2. Find the equation of the tangent to the graph of 3;:__(‘;_—_—2

at the point (3, 2).

) 1
~ Bz 3. Prove that the pavt of any tangent to the graph of y=,
intercepted between the axes is hisected at the point of contaet. '
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Show that the equation of the tangent at (A, &) is
y-kh= — (- )

which, sinee Ak=1, may be written
g .
Fty=2

100, Graph of a Rational Function for Large Values of x.
We apply the method of Descending Continued Division ™),
stated in Note (ii), p. 206; our chief purpose is to see hew
the curve appears in relation to its asymptotes for |Jarge
values of «. N

3

2 D
(A) Take first the equation y:m tatl thqh may be

written x

1

4
T TR s,
SR [ AT
E i

THFHEET

Tapgpand

N il

T
il
1 I

& Yo

*

N Fie. 94.

“\™ When  is large, we take as the first approsimation*
' @;1=;é+1, .
which is represented by '@ in Fig. 94; '@ is an asymptote,
*We take g, =x+1 and not %:i, becatise when x tends to infinily
¥tends to w41, Tor large values of m the eurve runs close to the line

%wﬂn by y=#+1, while it remains at o finite distance from the line given
¥ y=x
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When g is positive, y =y, +(positive quantity); thus the
curve appears at P, on the far right, above ¢

When « is negatwe 9= yl—I—(rlecratwe qua,ntity) thus
the curve appears at 7, on the far left, below .

Ex. Show how the graphs of the followmg equations approach the o
asymptote y=+4+1.

.,+.r . i a4 — l’.\‘f
(iy y= .’ (i) y="—- S (iiiy » T\ \
? e
(B) Take next the equation y== +m W hl@h "piay be

written -

)

y=a+1- .~}"

3

A
L

gl

|4

When z is large, we take as the first a@pmmmatlon
=a+1, '\s.
repre'-,entpd by @@ of Fig. 94; ¢ Q,]& an asy mﬁtotp
In this cdse, whether o is po%buu or neg,dutlv 2/ 1s
positive, and therefore = yg—(~p0q1t1\ee guantity); hence
the curve appears at p, onthe far right, below  and also
at p’, on the far left, be‘i"ow X"

Ex. Show how the graphs of the following equations approach the
asymplote y =x+1. Q\

D y= -‘-nl—L\\ (ll) ’!‘;’_di_‘—d; (iii) 4 J—--— +; 3
() We sha{ll.‘t-ake finally the equitlon
A } / w5 — B 42
x’\w ?}_ 'TZ—'.L-}-]_

Ay y “the method of descending continued division,
ealtying the operation til the quotu,nt contains at least
dhe term with @ in the denominator (that is, a term in 1/x);

\vehnd 3
9_°%°
2 T r g
= I 2
Yy=x+ P | e R,
e
wherc 7 I a
T N R N

11— =
a:+:1:‘-‘
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. .. 3 .
We nead to compare B with —=, which is the smalilest

. . 3 .
term of the quotient o+1 -2 when @ 18 large. Now

A2

= -—-—-T—n-f-j- . )
(%}
H1l—=4= A\
"( =t ¢\
The numerstor of this fraction is small when « is Jatge,
and the denominator differs but little from 3 for largewtilues
of «; hence, when x is larce B is small compared’x\fif-h 3z,
Thus, when @ ig large, the first approximationis”

5| o)

y=a+1,
represented by §'Q of Fig, 95; Q¢ is &I}:a‘@mptotc.
¢
= SHE S R i'i'n___;
T :
AP
._;é__.__: o : _.5;__—5
AT
S i
A\ Fa. 95,
The chcmﬁ approximation is
v 8 5
"}\'\ ._y9:3;+1-—5=-y1—5

pd JWhen 2 is Targe and positive, y, =y, — (positive quantity )
\Jbut when @ is (numerically) large and ncgative, y,=1,
+{positive quantity). Hence the curve appears at F, on
the far right, below @, and at P, on the far lefl, above Q.
The graph is shown in Fig. 95. Tt will be a good
oxercise for the sludent to verify the form of the curve by
eXamining the shape at such points as (1, 0), (0, 2), (=2, 0),
and by plotting a number of points on the graph.
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101. Worked Examples. We shall now work two cx-
amples to show how by applying the methods just indicated
we may obtain fairly accurate graphs.

Ex. 1. y=z{z—1)z-2).

(i) Near the origin. y=2%— 3%+ 2. ) |
lst app. g =2%; draw the line BOC in Fig. 96. .
2nd app, g, =2~ %=y —32%; draw the graph touching FOMat

and lying below BOC on both sides of a
(ify Near the point (1, 0), Put x=£+1, y=x. g ™
Then =G HOEE- D= g N
T . . 2373
W B T B
M ] H i
: i
SN
| | ¥ AN ZIN HJ
r ; {
i - NN
H ]
i i ANER
13
B ,
Nl =13 Ly
il N .
EAY i &
Fan ¥ TAD <
\: o L T
= 15—
Fi
f ]
X ] ] T
.t\ ki
\W ) :
\‘\\" r‘ﬂ: I ' i

NN - Fig. 96.

st app. #y=—£; draw the line EDF in Fig. 96.

2nd app.  my= —£ 4Ly +£3; draw the graph touching EOF at D
and lying above it to the right of D and helow it to the left.

(iii) Near the point (2, 0). Put #=E4+2, y=n.
Then . 7=+ E+ D=1 384 9f,
Ist app.  5=2%; draw the line HG K,

2nd app. 9, =2£+38; draw the graph touching HGK at & and
lying above it on both sides of &,



- helow it on both gides of 0.

&
\‘:
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(iv) Plot the points
G(—05, -19), (05, 04), S(1'5, ~04), 7(25,19),
and complete the graph in the usual way. :

Ex.2 =1
X ¥ &—-2
By Ascending Division, we find y=1z—Jat—Jo3—.... ) ,\:\
(1) Near the origin. 7N\ ¢
Tst app. ;aying; draw BOC in Fig. 97, A\

2 )
o2nd upp. =_1; - xz i draw the graph touching BOC af0hand lying

ez am T
: i : Ht' H
: 3 st
= J i
H R
ERS Tijarsa
i H TEHE
R e
Ao
= i
- T
_EE:'(,:
[a]masam

/
)

Fis. 07
(if) Near the point (1, 0). Put w=£+1, y=7n; then
9?=($+1)§=_'_g_gg»—gg‘d—....
£-1
Ist app. h=—§; drawEDF,

ndapp. y,=-£—9£2; draw the graph touching EDF at D and
lying below it on both sides of J.
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(iit) Near =2, Put s=£+3, y=9 then

=(§i2)(£j—i)z£_}: -
e e

lst app- 7;1:-25 ; mark G and AL in the diagran.

(iv) When # is large. By Descending Division, we find
'y.:a.‘-i-l—}-g—l—”.. ) '\~\

st app. ¥ =241 draw M4 § *\'

X

o P l“.‘
2nd app. py=2+1+ ;—': 371‘5‘%. ; mark P and RS'iaf{\ihe diagram.
; &

e N e\
(v) Plot guiding points, and complete the grapiiin the usual way.
. _ EXERCISES XXVT
1. Draw the graphs of the followitig ’e'qua-t-ions near the origin
() w—=2x—a"; (i) gt ot —x 5 ({ii) y=u2?;
() w=wta; .(.\:)"Qy; 2 —-45t '
2, Draw the graph of N\ _
(i) y=24+r4 2> near (0, 3); (i} y=2+x+4° near (0, 2);
(i} y=2—u —,&"E}’;lear' 0,2y (iv) y=2x—x* near {0, O).

3. Use the n\no\th'ﬁds of ehange of origin and successive approxi-
nration to e she graphs of the following equations, plotting solected
puints toyaive the graph precision :

,'\'(i)f.?f—"('r “Da—-2)w-3); () y=ate- 10

YD) y=a(e— 1P (iv) y=a2(v—THr+2);
OV ) y=aile-1): () y=a{l+23() +2);
'\‘:';'. {vii) y=(s+1)(x+2¥; (viil) g=(x%—1){a" - 2).
'"\; W 4. Find the equations of the tangents. to the curve y=a% - 3a+2
\ at the points (_. 1_, 6, €0, 2), {2,0), {3, 2). Draw these tungents and
make a graph of the equation bobween =1 and x=3.

5. Draw the graph of - —2¢¥4 32 -2 by examining the form of
the graph near chosen ‘points. i ’

) . 2 .
6.( ]:f)ve that y=x-1 +,. gives the approximatc form of
=13 Whenwislarge. Draw the graph of y_:f.(‘”_"' 5]

r+2
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7. Prove that y=s/4+2%4 gives the upproximate form of

At Vi - 5 .
y= Iy when x iz small, and L the approxzimate form
wien # is large,  Druw the graph of _x_(_.?_-_l— 1)
(z+2)F

8. Trwaw the graph of y=(2e*—z+3)/(a2+4+1) when o is small, Q
and alxo when # is large ; complote the graph by plotting a miber .
of points. Prove that the straight line =3 —4x touches the curve'at, N

{0, 3) and cuts the curve again at (—3/4,6). . ,\ ™
9, Tind the equation of the tangont to the eurve y__xg '“"1'3
at the point (1, 2}, —.:H—

Bhift the origin fo the point (1, 2) by putting '.::—r,+~1\g.f 7§+ 2,
and then use A%cendlng Division ; the linear approxhgnation to 5

gives the tangent (§98), \
N

10 Pind the eguations of the tangents to thQ following curves ab
the points speciiied and the shapes of the gr a&ﬂwmcn the peints :

(1) y=(@a— o 1) - 0 +9) it 1T, 13
(i) y(r )i —2F wh (‘36)
(i) gr=2*e = Di(z+1) Wt (2, ) :
() y= (s oSkt 2 0,);
) y=(0g* &Beian) (@32£-10049) at 3,1

11 Use the methosl~. of change of origin and successive approxi-
lllﬁlIDIl to draw t;h(,\o%ia,phh of the rolhm ing equations, plotting guiding
Puints to give Kemmon to the figure :

e r—g
1)'\'5\\3';;_1; (ii) ;—M (iii} J_i. )

. .”.‘} _ w—2 & (?,—-2) P i ’)3
,..\ \(?‘f) ¥= @1 ;o (v g=" (o (vi) y= To—1F
V, a4

12, Verify the following talile for the eguation y—~—. P 1 and

uss it fo deaw the graph of the equation

amall ‘ }_drge [ -3 ‘ — 3

—1[1 g | 3

X
¥ |1+2r+zr~ apyp. Jl+2o APP- ‘ .r;13‘37 143,

373 r 13/7
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( 3)(f—2)

13, Verify the following table for the equation y=‘——"— e

and uso it to draw the graph of the equation :

& nearty 1 nearly 2

y=—E+2£, app. 'f:=§.-*3— £39, app.

x small - large 32 i 4 -1;2 <§'4
N/
¥ | 2-#-2+%app. | 1-%w app. | —-1/7 | 6/13 15,@ 10:7
S
14, Verify the following table for the equatiepy @-T _]) (e—7)
and use it to draw the graph of the equation : v T "
a nearly 1 nqai;l}?
L W
- A
= — 1/, app. ¢ o <B/E, app.
- "" ™ e e
& gnaall Jamge -1z I[ —4 | 32 ‘ 4
¥ || Lj2+afd+54%/8, app. { B4 2/, app. | T/15 | 7/10 | -7 | 13/
N ] -
S e
15, Verify the foll&ﬁ\mg table for the equation g J:@——;‘J (;__21%-
and use it to draw t{ graph of the equation : (o =3)
x nea.rly l‘ nearly 2 nesrly 3 nearly 4

——fi5+2‘2f36 app. | n=£/2+ 5824, app. | 7= -2/t app. | 9=0/%, ~pp.

\{E large 0 t -1 | 3z | sp
. ‘ Lt app. | 16 | 3710 |- 108 1 Bt ‘ 6 | 127
AN
<\3 16 Prove that (2, 1) is u point of inflexion on the graph of
y=—'+6et - 11x 47,
and find the equation of the inflexional tangens.

10

17. Find the point of inflexion on the graph of
¥=2a% — 328~ 192+ 18,

and show that the inflexional tangent meets the graph in three
coincident points,
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18. FProve that the line y=2(x-1) mects the graph of
y=2*=3a+5x+1

in three eoincilent points. Draw the line and the graph in the
neighbourhood of the point of contact.

19, vao that: the point (3, 0) is a point of inflexion on the graph
—bx+8

—8r¥3’
draw the graph and the tangont in the neighbourhood of the p&\

of contact.

of y— find the equation of the inflexional tangent, and \

20, In the oguation y-gx& 2422

e put &=f+4, (ﬁ i use
Aseending Conlinued ])IVISIOH and determine A, & o %\ e point
(4, &) may be a poink of inflexion on the graph of

9= (8 - 45+ 29)/(40° ~ B+ 7 )\\Q"*>

\/
O
\“‘3\
.‘& ¥
QO
A\
N
RN\
N\
~
&
EN\J
Q
N\
£ >
=
{Z» \;
>
f%}"'
\Q
N\
x\‘x\
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CHAPTER XIV. X
: o )
DERIVATIVES OF POLYNGMIALS. MAXIMA £ND
MINTMA. ' N
102. Oradient of a Graph. Tn tracing a graph accurately
it is almost casential to know the posifion\of the turning
points. When a polynomial is cxpressedyin factors it is
fairly easy to find, at least approximeftdly, the position of
the turning points, but the case 1g @ltered when the poly-
nomial is not in factor form, Y
The student will have noticedhthat at a turning point on
the graph of a polynomial e tangent is parallel to the
@-axig, though the tangent™at a pomnt may be parallel to
the x-axis and yet the peint not be a turning point. For
example, the g-axis is{a tangent to the graph of #® at the
origin, but the origgn,\is a point of infléxion, not a turning
point. We muﬁxhowever, seel for the inrning points
among those gk which the tangent is parallel to the w-axis,
and we thergfore give now & method of finding an expression
for the gradtent of the tangent at any poini on the graph
of a polyudmial. The gradient of the tangent at a point
on K:g}&fph is often called the gradient of the graph at that
portty we shall see how much additional power in forming
aymental picture of the graph is to be obtsined by a

. (“Knowledge of the gradient.

- N
\
\;

When the origin is shifted to a point on the curve, the
cquation takes the form
n=af+b£%+higher powers of £
and the coefficient of £ in this equation is the gradient
of the tangent at the new ovigin. We shall apply this
transformation to the graph of a polynomial. :
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I, y=ux®+bete.
Shify the origin to the point (4, k) ou the graph by
writing k4 £ for @ and k45 for 5 we obtain

Etn=alb+EP+b(h+ &) 40

=al’+bhte+(20h +b)E+agh RX &
But b=ulk?-L bl ¢ since {(h, k) 13 on the curve, so tb@\'
we have n=(2ahFBYEF AL (o, 15)

The gradient at the new origin is tiicrefore @k -+5),
that, is, the gradient at the point (A, &) whenfghe curve
is referred to the old axes is (2ah+D). Rug(h, ) is any
point on tlic curve; we may thercfore wii{eo%, y in place
of 2, %, and we now have the AN '

Rule. The gradient of the gropleof Yy = as®+batc ot

wivy povat on i whose abscissu is P

Lo by, ettt e e (I}
1L = aad j-.j’;hlé—# cx 4.
Shift the origin to anySpoint (b, k) on the curve; we
obtain ' A

bty = 0 (UEREY+ b(h+ £ +o(h+£)+d
= (I D2 ¢y W) - (ki o 20 o) £ (Bech + ) €2+ af’,
and therefores &;iiﬂb@ k=ald+bh2 4 ch+d,
3 (B0l + 200+ e) £+ (Buh+ bY@+ u @
:,{;T,(Sor- V2004 e) £ F (Bah 0 el e )
Henoenbhe gradient at any point (h, &) on the curve is
(3_&{’&:' bh-e), and we can state the
RBale.  The gradient of the graph of y=uaa®+ba’fcx+d
NI @y podnd on it whose ubscissa 18 @ 18
Vo Bt 2L e (1T
Lyl 1 p 24 +p2?+grtr,
wheve n jg g positive integer.

- The student who knows the Binomial Thedrelp will have
Bo difficulty in proving, by the same method as in T and II
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that the gradient of the graph of equation ITI at auy point
m it whose abscissa is 2 s _
nop® 1+ (n~ 1)ba 24 (n—2ex 3+ ...+ 2pz+q. .. (IL1a)
Equations I, 1f are the cascs of III for which m= 2,
#=3 respectively. The following points should be noted:
{1} The absolute term, ¢ in 1, d in II, » in III, does nob
appear In the gradient. (What is the graphical explanafiod
£ this?) e\
(ii) Any term in the gradient is obtained from thé ‘corre-
sponding term in the polynomial by multiplgiag)by the
index of the power of z in that term and thentaubtracting
1 from that index, Q

Thus the term 2bx in (11«) is obtained fromnthe term ba® in 11 by
multiplying d#% by 2 (which gives 2bs?) and 4hen subtracting 1 frow
the index 2 (which gives 2b7). The terihg b, ex, g in 1, IL, TTI
give b, ¢, ¢ respectively. N\

A

Ex.  Verify the expression for tb,q'.g}"a’,dient in the following cases :

Fulynomial. RN Gradient,
&, A .
x8, N %,
® ~N 3k,
", < AN,
ar+b o) .
o= T, 202,
Bl 35— 7, 6x— 5.
A0 1720 — da?. , 17 - 8,
A L) 22— 10z,
N\ Bt 41885 - 2041, 84544822 — 2,
,§~ 4 {(#-1){z—2)(x -2 3x% 122411,
R\ (% — 1) - 4), Bat = 152244,
AN £ Y (z—a¥{z—b). {w—a)(Bz—a—20).
- (2—ay'(z—b). (- aM(rt+ 1)z ~a—nbh

103. Derivatives. The expressions that have been found
for the gradient are called the derived fonctions or, more
]orleﬂy, the derivatives of the polynomials, Thus 2uz--b
18 the derivative of az?+ bz 4. '

When the polynomial is represented by a single letter,
88 ¥ or by a funetional symbol, as f(z) or F(x), the

Q"
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derivative is often denoted by the single letter with an
aceent, as ', or by the functional symbo! with an accent on
the functional letter, as f(z) or F(z).
Thus it y=as®+ba+e, then ' =2ax45;
if Aay=ae?+bote, then F(a)=%az1h, /
Sometimes the derivative is expressed by the letter Da |

(the first letter of the word “derivative ) placed to the left)
of the polynomial, which is enclosed in brackets; thus
Diaa? 4 be+-¢)=2a0 4 b. R ":'g

The value when z=a of the derivative J(=) @&denoted
by f(a). : QO

Thus if Fay=sa8 52242, N
then f(#)=122%—-10z; f{a)=12a%10a; j{‘l;},\=2 =2

H the inde'pendent variable of Mhe function (or the
abseissa of the eurve) ig denoted by some other letter than
%, say by w or ¢, the derivative gg,6f course formed by the
same rule ; for example, o8 :
it y=ant+bu+e Ny = Dy =2au+b;
and if y=at?+ bt oy 3y =Dy=20t+b. _

When we wish ){;Eh‘aicate in the symbols 3, Dy which
letter is used fopthe independent variable, that letter is
nlaced as a suflissthus, 1, Doy, e, Doy '

N
Bz 1, If fgyat 2%~ 3x + 1, for what values of x is f{x) zero?
Q" Fe)=322-3=8(w -1z +1})

The faldes of » for which [(x) ig zero are thercfore the roots of the

A\ 3z~ 1){(z+1)=0.
.»\: r»1316 required values are therefore 1 and ~ 1.
) 2
Ve 1t Am=2(z~1)(z~2), for what values of z is f'(z) zero?
f(ey=a" - B2+ 2w, fla)=3a"-6r+2
The required values are the roots of the equation
32— 6x4+2=0
3+./3 . A

namely =5 » that is, 1577 and 0423 approximately.
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. ¥x. 3. Tind the eguation of the tangent at the point (1, ) on the

Curvye y=2"—8x2+8 ... R, {i)
The equation of the line through (1, #) with gradient wm is _
g=d=m{x—1h i W)
The gradient % at the point on the curve whose alscissa is » is
given by the eguation ¥ =3a% — 10, : ~
and this cquation gives ¥'= —7 when x=1. The valuc of m in (i) s
therefore — 7, and the required cquation is AN
y—b=-T{x—1} or Twty=12. O

- N/

In the zame way the equation of the tangent at any 0;;]4,@1“ poing on
the curve may be found, Thus at the point on thgSeurye whose
abscissa is 2, that is, at the point (2, —3) on the curveighe valoe of ¥
18 —8; the tangent at (2, —3) 1s therefore the ]i;mﬁlu'ough {2, —3)
with gradient — 8, and its oquation is v/

y+3=—8(-2) or y=-8r$l3
. {2 .

Hx. 4, TFind the equations of the tange itsto the following curved

at the points on the curves whose abscidde)are given :

() y=dr'—da- T; x=1, ,?:’-_-”3.‘

(i} 2py=a?; a-2p, 2=y

(i) y=(e—1)(r - 2)(zeB)s #=0,1,2,2 4, -1, -2

(W) y—={v—az— W3 *=0, v=b

(¥) a'ly=am; &0; a=h, Hr=i

. Ny qe—1 el ,'

T oY - 2™ thon s e 7Y
@Y, Then i.‘f‘;\ e S

When p=b and\g(X‘r'}. the gradient is ne/b, and ihe tangcnﬁ is

‘.'il— €= {;’E(-f -8) or by e {n—Thhe,

N2 .
The v;uh{gu")f e g, of course, 54e, but the equation i often more
useful&v;}fm_u 15 containg Loth the coordinates of the peoint of coniact.
8. The equation of the tangent at the point (u, f{e)) on the

ﬁ,"ﬁﬁ' of y=7{z) ts ¥ —Huw)=(z—a)/(a).

N

m\J

\‘;

{: When #=a,y=7(a); when 2=a, the gradient Fix) iz equal to [{o)
The tangent in therefore. the line through (a, (@)} with gradient f{a)

104. Use of the Derivative in Curve Tracing. We shall
work one or two examples to illustrate the use of the
derwa-t_l_ve m curve tracing, We first note the following
propertics of a curve that must be familiar to the student.

(1) If the gradient at a point £ on a curve is positive,
the tangent at P has a vight-hand upward slope; « point



£ 103, 104] - MAXIMA AND MINIMA, : 253

moving along the ecurve in the direction. of Increasing
abscissa (from left to right) will as it passes throngh P be
moving wpwards as well as to the vight. On the other
hand, if the gradient at P ig negative, the point will be
moving downavards as well as to the right when it pRsses
through P. Hence if the tracing point move so that its

ahseissa increascs, it will move upwards or downwards\
according as the derivative is positive or negative, ¢\
(2) if the gradient at £ is zero the tangent at PN °

parallel to the g-axis; the tracing point is for the momént
moving neither up nor down, and P is, as a rule, aburhing
point. : ' ¢

If tmmediately to the left of P the gradieﬂ'f;’;}?s positive
and immediabely to the right negalive, then6he point rises
as it approachcs P and descends after padeing P; P is a
turning point, and the ordinate at P is 38180 be 2 maximum.
The ordinate at £ is greater (algebiafally) than any other
ordiziate near P and on either side 6217

On the other hand, if in appfiaching P the gradient js
negative and after passing P pesitive, the tracing point first
descends and then ascends 2 is still a turning peint, but
the ovdinate is now a minihum—Iless (algebraically} than
any other ordinate neat P and on either side of P. (See
the remark in Ex. 1)

The gradient at 3{.\110\,\’0\?31', may be zero and yet P may
uot he a turningypoint; it way be a point of inflexion.
As a rule ingpéébion of the ordinate near P, or, preferably,
of the gradiént near P, enables us to decide easily wlether
Pis & sy point or not,

P2 INFind the turnin  points on the graph of
N\ y=a{z—1){z-2)
L Bhe graph is shown iu Fig. 96, p. 242. In $103, Fx. 2, we havo
: ?f:én that the gradient is zero when #=1577 and when a=0423
1{}8 worresponding values of y are — 05385 and 0385 The pomts{
3 (1877, -~ (385} and R'(0-423, 0:385) are the turning points; at S’
ke ordinate is & minimum and at & a maximum, These points R
ald 8" nre near the points £ and S of the fignre. ]
~ote that the ordinate at A is not the greatest ordivate of the
CUrVe it s 4 maximum because it 1s greater than owy ozk_ea" eg i
SUDI]M'L‘J" the ordinate at, & is & minimum, though it is ohviously not
the feast ordinate of the curve,

N\
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Ex. 2. y=f(2)=22% - 347 ~ ) 2 4 10.
Here Fle)=62—6x—12=6(x+ 1}z —2),

and the gradient is zero when #= -1 and when x=2. The points at
which « has these values are probably turning points; in any case
they ave useful as guide points for the diseussion of the graph,

Draw up the talle :

© | -w| -3 |-25 hz‘—l‘ o 1|2 s 4.l"+.oé~
s e | 60 [aos 2] o c12] c1z] o0 |2 060 v
y | -» -35&-10[6‘1?[10‘—3‘-.10,"1,i42‘+x
! - = % S L

Bt is guite clear from the table that the poiats¢<1, 17), (2, — 10
are turning points, but the table gives much mord information. The
table suggests that as & increases from —@to —1 the gradient &
positive, and therefore that the tracing poilittsteadily rises from the
extreme low left to the position (— 1, 179N Fxhmination of the gradiont
confirms the suggeation; because if &\¥ negative and numerically
greator than 1 hoth 41 und & ~2 aré”negative, and therefors £(x),
which is equal to 6{z+ 1}z ~ 2), igporitive.

LRI S
T H Y

TT

T
o)
T

]
R .' by Bl

AL PAR00

Fra. 98,

From a==11t0o r=2 the gradient is negativo ; therefore the tracing
point now descends till it reaches Lhe position (2, —10). After passing
thx_s position the gradient iz always positive ; therefore the tracing
point now steadily rises and moves off to the right and upwards to
infinity. We thus have a complete description of the way in whi
a polnd traces out the curve.
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It is easy now Lo draw the curve. When plotting the points it is
well to drasw o short length of the tangent at the point: near its point
af contact the tangent practically coineides with the curve.  The
graplt is CA DG (Fig. 98).

We ean also solve, approximately, the equation

Tt B — 1204 10=0;

the earve crosses the x-axis where 4 has the values — 222, 076 and
246 approximately, and these are the roots. O\
{
At & point of inflexion the gradient has a turning volge.
Thus, on the graph of #® (Fig. 68, p. 184}, the gradidt is
positive, but decreases as we pass along the cupye from
P10 0, where it is zero; as we continue alondthe curve
from O towards P the gradicnt is agaiqu\pesitive and
inereases. It has therefore a turning va%c, zero, at the
point of inflexion 0. Similarly, in ¥ig?90, p. 234, as we
pass along the eurve from P to P thés curve gets steeper
as we approach ), but on passing (Ml carve beeomes loss
steep; the gradient has again a\titning value at O, not
zero in this casc. SN
~ Now when we have foundighe derivative of a function
we can draw its graph, andito every turning point on this
graph will correspond alpoint of inflexion on the graph of
the given function, /Fhe graph of the derivative of a
function is called¢#he” derived curve of the function: the
graph of the fymetion itself may be called the primitive
clurve, o\
A
Ex 3, Ei“m';i"t’he point of inflexion on the graph of the equation
\\ y=F (@)= — 302 — 122+ 10,
Thf;}bel’iva,l.ive of Fflx) iz 6a%—6r—12 and the graph of this
derbeative, 774 in Tig, 98, is the derived curve of FZG. The points
:F il P have the sameo abscisma, and these are ealled “corresponding
N\Points” of the two curves. Similarly A4 and 4 7 and F, ete, are
N\eorresponding points, The ordinate of A" measnres the gradient
at ¥ thus the gradient at #, wwhere x=—2, is 24, and this is the
ordinato of F (In plotting the derived eurve it will usually be
Necessary to choose s new scale unit for the ordinates, but the scale
it for the abscissae shonld always be the same; both scales are
the sane Tig, 98,y ’ L
&t us, for the moment, denote the gradient or derivative by g;
theq T g=621-6x—12, g'=12r—-6

EN.We i
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Here ¢'=0 when w=4. The point (3, — 13%) on the devived curve
is a turning. point on that curve; fherefore the corresponding point
{(3, 3%) on the primitive curve is a point of inflexion ou that curve.

Similarly, the abscissa of the point of intlexion on the guph of
Ezunmiple | s given by D(32%-6242)=0 o 64—6--0 or =1 the
point (1, 0) ia therefore the point of intlexion.

The gradient, denoted above by g, is the derivative of the function.
y or f(=, and therefore ¢, the derivative of g, is the derivaszive of >

. derivative of ¥ ¢ s called the second derivative of 4. The zecond

detivative of u function is denoted by two accents, ¥ or /() ; Fhasif
y=F{r)= 2" — Ba® — 122 + 10, S\

then  ¥=f(0)=6s2—6r—12; ¥’'=f(a)=I22—6.\ .

We might in the same way form third and .llingaﬁ derivatives |
thus in the above examples the third derivative i @oncted by ¥”
or (&) and " =12. _ “\ :

In distinetion from higher derivatives # N called the firs
derivative, . o \

Using the sceond derivative, we have LOW ﬁhﬁf following rule:

The abscissae of the points of inflexjon on the graph of f(w)
are, in general, the roots of the equation 7"(z)=0.

We swy “in general,” because a valu#'of » ray be a root of 7(«)=0
and yet not give n point of inflexith ; for example, if f(x)=.% then
Fix)=124% Lut the origin s, ot w point of inflexion on the graph
of #t. In all cases, howover\the alwcizsa of a turning peint on the

derived curve is the abseisiayof a point of inflexion on the primitive
CUrve. 4

Note. 'The reflts given -in questions 11 and 12 of
Bzereises XXWAI arve very important. Thus, for No. 11,
we have A\ o o a agt

\k+n:E+_z_'__2$+_z S
N ‘ & h R RAAH-E)

Butk=a/h since (A, k) is on the graph of y=afz, and

fefore the first approximation near the new origin

o
?fz"_ﬁéfi

" s0 that the gradicnt there is —afh? " Hence the gradient at

any point on the graph of afx is —afa®. 'The function
—a/z? is called the derivative of a/z. (Comparc §102, 103.)

The result in the case of y=a/z shows that the
derivative of Eﬂ is —%. 1f we use negative indices, then
we have *® ' .

D(az=my= —nag-n-1
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which shows that the rule for forming the derivative of a

power {§ 102) holds for negative as well as for positive integral
indices.

'EXERCISES XXVIL

Trace the curves given by egquations 1-10; state thelr turning
points, their points of inflexion, and the valucs of & at which they .
cruss or touch the o-axis.

1. y=72%-12¢ - 10, 2. y=15+8r— 245 _ £\
3. y=at{zx-2) 4. y=2¢+327= 12046\
5. gemaf—3at 1, B, y=A—Tu+3. PR
T. y=at -8 4150442 —20. 8, y=det-8F 464210, Y

9, yeut— 408 — 42+ 165+21. 10, y=2°— brttBARY

L. Bhow by shifting the origin to the point (%, /Q\cﬁn the graph of
3/=g, thal the equation takes the form ,“j\.;.

n=— % ,‘;‘ + higher po:v,f)r;&.éf &,

and then prove that the gradient of Qhé’éfr:,ph of 3{#% af any point on

. L . @
it whose abscizsa is @ is — - AN
z N

12, Bhow, az in Ex. 11, t-h:{the gradients of the graphs of

L) @ @
3@3: Y=op Y=g

where # is a positive fiteger, are respectively
s 20 3a e

O - F) Tt Tt
Deduce that ;t?}e gradient of the graph of

\d boe d . B 2 3d-

, PTETE Y TaTE T
13 \ Fhud the turning poinés on the graphs of equations 9-18,
»Ei’fq%ises XXTIL P _ '

105, The Tangent and Ooincident Points. In preceding
sections we have found the equation of a tengert by using
the method of successive approximations; thers is another
method that is of great use which we shall now eonsider.

Suppose & straight line [ to meet a curve at two points
4 and B. Move [, so that these points of intcrsection

\<&

o goat
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come nearer and nearer to esch other until they coincide,
say at P ; the line L is now a tangent and P ig its point of
contact. It does mot matter of eourse how the points
A and B are taken on the curve to begin with, provided
they come together at P; both of them wight he distinct
from P (Fig. 99 («)), or one of them, A say, might coineidd™\

- with P (¥ig. 99 (b)). The line L might also meet the curve

ab other points than A and B; for example, at C¢\The
tangent will also in that case meet the curve at 1§ point
D, to which ¢/ has shifted. \
et
° P

)

Fis. 99.: )

®d . . .
Tet us now consider thesalgebraic counterpart of this
way of regarding the tamfent. The coordinates of the

points 4 and B are obfined by solving the equations of

~the line and curve ag'simultansous equations. Suppose for

Simplicity that theNine and curve never interseet in 1more
than two poin'-s'\:‘ then so long as 4 and B are distinet the
equations will ‘wive two unequal values for the o of the
points, but.wilen the points eoineide at P there will be only
one distingt/value for @ The equotion for a will still be
of thersevond degree, but o will have ils fwo roots equal.

‘,&ké, for example, the equations

grdwte, (1) y=22—Rr41. o (2)

% Solving these as simultaneous equations, we find the equation for

22— BT 020, iiiiessreeeesssser e rmserb)

This equation gives the abscissae of the points in which the line (1)
cuts the curve (2), and it has in general two unequal voots; to each
roob the equation (1) gives the corvesponding value of g, so that we
obtain the comdinatez of the twe points of inlervscction, oy, #ih
(s 712}, sy -

By giving different values to e, we make the 1ine (1) move mto
ditferent positions {the difforent 1ines being parallel in this case).

Now let us move the line mtil it becomss 4 tangent ; the two roots



§ 105} -COINCIDENT POINTS. 259

of equation (3) must then becowe equal, and we know that the voots
of the oualion wiil be egual if

G4=58{l—¢) or e=:-—7.
Eeuation (1) now becomes x 52— 7, and this is the egoation of the

tangent. :
Note that when e= — 7, eqnation {3) is still & guadratic eguation,
Zat —Br+8=0 or 2(z—2Hx—D=0;
each raot v now 2, and when e= —7 eguation (1) gives for cach 4

these equal values of x the equal values 3 and 3 for y. In ofhey
words, We now have &y -+ 2o =2 and gy =#,=3, and (2, 3) is the peint’of
eontact. : R
Apgain, the peints in which the line y =38 4 intersects the Cprve
9’ —x+3 ¢
Y= et O
are obtained by solving these as simultaneous\'equations. The

enuation for ¥ is Vo \d
(B-da)(P o+ 1)=22%—a+3 ord #4r+3)=0,
80 that £=0 fuvlee und w= — % once.  Thdgbldtions of the stmullaneous

equations ave therefors #=0, p=13 twjcnand x==—3, y =6 once. The
live therefore touches the curve af the’ poiut (0, 3) and intersects 15
agaiu at the point (-4, 6). v:.;’ 2 )

The conception of equgh roots of an equation and of
colneident points on aguarve, thongh at first sight artiﬁmg,],
Is really very natuzall® In general, a line meets & enrve m
two or more dis{g'\iﬁct’ points, and the equation that deter-

 mines the « (on, 1Mwe please, the ¢) of the points has two
or more distimkb’roots; but we may move the line so that
two of thepbihts become coincident, and then two roots of
the equgbion boeome equal.  The graphical interpretation
of t%"ﬁoiucidence of the points and the equality of the
1088 that the line is now a tangent, though it may of
wiubse intersect the curve elsewhere, We arc thus led to
o ~the following definition.

\ ) ) Definiticn, The tangent to a curve at a point P on it isa

line which mests the curve in two coiucident points at F.

The algebraical form of this definition is as follows:

f the equations of a straight line and a curve, regarded
3s simultancous cquations, have a solution which appears
t“"'ICO_, then the straight line is a tangent, and the repe&t-ed
solution gives the coordinates of the point of contact.
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Ex. 1. Tiud the eguation of the tungont at the peint (f, 1) on the
graph of the cgaation

The equation of any straight line througl (1; 1) is of the form
' ¥—l=mla—1), R TP P POOUURPRORIN ¢ 1)

' Substibuting from (i) in (i), we have the cquation for o, £\
' 2 {4+ B (4 13=0 i (1)
1f equation (iii) has equal roots, we must have < \\
(a+3P-8(m+1)=0 or (m—1P=0 \\

Therefore m=1 (twice). Putting 1 for m iu-(iii), we ‘;{*:l} that =1
. twice, and therofore by (ii) =1 twice. The reguiged stuation s
“thue y=z. & .
Why should the equation for m give m=1 ti‘:’i‘dﬁ?? The reason s
that in general wo can draw fwg tangents toNhe¥graph of (i) from
& given point, but if, as in this cage, tho giVQ;point ig on e curve,
the two taugents coineide. Compare Ex. 200" .
W .
Ex. 8. Tind the equations of the tané_:_"t;l\w% from the point (2, 2) to
the graph of the equation : C\VY )
_ F=228 3B e, (i)
_The point (2, 2 is not an thé~eurve, Any line threugh {2, 2) is
given by T C I NN ¢
Bolving (i) and (i) as simtlbaneous equations, we get Tor the abscissae
of the peints in which lifitand eorve intersect,
T Ll R VS (i)
The line will hé\a"tangent if the roots of (ifi} ure equal, and the
condition for egualiroots iz
.".;(‘rri+3)2—16m=0 or  (m—1)(m~9)=0, '
so that m e 9,
It mslequation (iii) gives #=1 twice and then (i) gives y=1
“bwlcodie targent is therefore y =, the point of contact being (1, 1b
ARIV=1, cquation (i) gives =3 twice, and then (i) gives y=I1
tW_TBG; the other tangent is therefore y=9x—16, the point of contact
being (3, 11), .
mm\J hhx, 3. Find the equation of the tangent at (1, 0) to the graph of
N/ the eyuation I C N ) URUTIRIIROON ¢ )

Any line throngh (1, 0) is given by

F=m{E =T} i {ii)

Solving (i) and (if) for the abscissie of the points of intersection,
we get the equation

@~ V=a{z-1)2~92) or (@ —1)(2% - 2w —m)=0. ......(ii})
One root of (iii) iz 1, and as the lin is to be a tangent at the poind
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(1, 0 a second root of (i) must be 1. Bot 1 will be a root of
-9 —m=0 if m=-1. Equation (iii} now becomes
(@—1z-1)(z~1=0,
o that in this case there are #ree equal roots. The point (1, 0) is
a point of inflexion und y= —w 41 is the inflexional tangent,
Thus we zee that the inflexional tangent weets the enrve in fhree
eoineident points at the point of inflexion.

Ex. 4. Find ihe cquation of the secant through the points (w, 3 \
and (g, »,) on the conic GBI =T, #ofa) -
and deduce the equation of the tangent at (e, 7, G by

The equation of the Hne throngh (s, ») abd (y, gutis Y

ke W S | ¢ i
: @~ Pi—gs TN ; .u\ ..... (1)
Now iutroduce the condition that the pointa lie biNthe conie (i};

wa have arl+byt=1, azi+ipti=1, \\;
and tharefore alm?—mB = — bly? — M W (1)

Multiplying the loft side of equation fuNby a(z?-x% and the
right side by the equal guantity —5{y% %), we get

. alwy + ) (T = By)=— b@ﬁ‘%)(ﬂ =¥
that is,  @lo +oy)or L Bl o)y =ady® by, 2 + ey + by
or alr + oo +b(y + 3/2)3}::'“['—}— G g B Yy e (i »)
sim:e_ ax i+ bint=1. (The Jthdent shonld verify equation (iv) by
s}mwm g thut this linear sguation is true provided (o, a) and (g, ?/::)
lie on Lhe cunic ; the equagion iz therefore indopendent of the parti-
cular msthod by whicgg?v was obtained.) .

To find the tangetuput »,=ux; and yy=jn in equation (iv); we get

\ Quiyet 2byy=1+ax’+ by =1+1

or A aani+ by =1
Ex. 8, (Dgtérmine ¢ so that the straight line
.J\\" T PPN, SOOI )
Az be'h tangent to the curve given by the freedom equations
~O Bemt(t= 1)y Y=t 1). corererenireneensin e {i)

) The values of ¢ for the points of intersection of line and curve arc
obtained by substituting in (i) the values of £ and y given by (ii); thus
Bt — 1)~ 2 (44 Dbe=0 or  B-5r+e=0 .. {il)
The roots of (iii) will be egual if the line is « tangent, Ilenco
25=1¢, und the equation of the tangent i
12— 8y +25=0, _
The point of contact is given hy oquations (ii) when {=5/2, the

double rogt of (ili) when ¢=25/4 ; the point fe {f LT



262 ANALYTICAL GROMETRY. [oH. X1V,

106. Some Theorems on Roots of Bauations. The follow-
ing theorems are often needed in discussing tangents and
turning values,

The Quadratie Fguation. It is proved in all books on
clementary algebra that the quadratic equation

ax®+bx+e=0 _
hag its roots (i) real and unequal, (ii) real and e ‘T}a],
(111) imaginary, according as (0% - dac) is (1) positiws{rob
zero), (i) zero, (iii) megative. This expression 62>Aue is
called the diseriminant ot the quadratic cquationd ™

The Cubic Equation. If we have the ({@ic cquation

 in the form B gutr=0, ..00 O (c)
the expression : dif* - 2742 O _
is called the discriminant of the equ @ A cnbic cquation
has always at least one roal root {the coctlicients g, ¢ being -
supposed real). Two of the rodfy will be equal when the
discriminant is zero and thewyalue of each of the equal

roots is — 3r/2g, N

QY

We may prove this thegrtm as follows. 1 equation (<) has two
equal roots, then #*-gazt e Mnst have a squared factor, (2 — £ wF.
Divide #*+gztr by (x§ £); the integral quotient is 22| ko + (4% +¢),
and the remainder isiﬁ“,. gh+r, which must be zero. Thersfore

\" Fahgbtr=0 . iieeiirerncneennnn{)

The quolieng™must be again exactly divisille by (m=—1), and there-

fore the newypeémuindor, 345 g, mnsk be zero, so that we have
_ > BE4g=0 or P =30 {ii)

But, 5P (), Fk+g)= —», and therafare, by (if), b= — 3r/2g. Sub-

shif ﬁl:(?}‘l m (1) now gives -

A . et !
N P -%g or 4gF272=0.
S 0 Ttis casy to show that when 467 43772 =0 we have
4 : 4
\ Ir ¢ 3r
S ey =1 L5 P
TAgEt ("H_Qg) ("L g )’

s0'that the roots of equation (¢) are — _"_j?:‘ _?”f'_, g
. 2. By ¢ .
When the diseriminant is negatize the three roots of the
cubic (C) are real and different, but when the discriminant
18 positeve two roots ave iu‘mginary and one real.
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These results may be proved in the tollowing way. )
If y is a turning value of &% +gv+r, then (§ 107) the equation
Fhgrdr—y=0, ... et {1)
considored as an equalion in v, wust have two equal roots. The point
{, y) is thus & turning point on the graph of _
Yt gt 7N\
therefore we must have Dy=0, that is, 322 +9=0, ...errveveeenn(2) a .
so that, when (# #) is a turning pofut, eqnations (1) and (2} hojd\".\
simultanconsiy, and the turning values are the valuos of y given{h
equations (1) and (2). G
To lind y we have, first by (1) and then by (2), A
2 {*;

' 3 ) "k
(r—y¥P=2"+ 292"+ glw?= — §§-+ o % A N

or 32—2r3+‘1—,(493+27r2)=0, e NN (3)
27 A

If 3 and g, arc the two roots of (), it wilKi# readily seen from
graphical considerations that equation ()Wl bave three real and
distinet roots if, and only if, 5, and y, have Opposite signs. Hence in
thix casa the product 7y, must be negative, or, since the factor 1/27 is
pasitive, 4¢3+ 2772 must be nagative. o3

Tt eguation (0) has two imaginazywoots, 7 and », must be of the
1f)a,me s_ign, o that the product y]\yz."gmrid therefore also 4g%+ 277 must

¢ positive. N

I equation (¢) has two egQud roots, either y, or ¥, must be zero,
so that the product 7. andtherefore also o'+ 27f must Le zoro, as
has bean proved ntherwii.‘.}

The enbic equadipn :
SO PPt gretr=0 e ()
becomes, \y\}iéﬁ’f— ip g put for z,
%f‘ Hog—ip (5P —ipg+r)=0.
The discriminant of this cubie, and therefore also of the
Clde (1) g - @ o8
N T e es
\Jthich ig aqual to .
47+ 2Tt dpr — prg”— 18per.

If this expression is negative, the roots of (¢} are all
veal and different; if it is zero two of the roots are equal,
and it it is positive two. are imaginary and one real.

¢ graph of Gw?4-bw+¢ will intersect the x-axis in t.wo .
G.A.G, B2 .
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'different points il the roots of the squation aa?4bud o=
are real and different; it will touch the axis if the roots
are equal, and will not interscct the axis af all il the
roots are imaginary. But just as we say that the cquation
has two imaginary roots instead of saying that it hag no
roots, so it is eonvenient fo say that the curve in this cagd N
ents the @-axis in two “imaginary points” the abscissad
of these points being the imaginary roots of the eqgatidn
aa?+br+e=0. In a similar way enrves are said 0 )inter-
sect I “imaginary points” when the equatipns that
determine the coordinates of their points ofylutérsection
have imaginary roots. ¥or example, the Givcle and the
straight line given by the equations \/
_ W tyt=0, w+y=4)
intersect in the two imaginary poind{2 -+ —1, 2—J=1)
and (2—v—1, 24+ —1),
it an equation with real coeflitients is satisficd Ly the
Imaginary mumber ¢+b/( =1} it is also satisfied hy the
conjugate imaginary o —bJ-1). Tence, if the imaginary
point {a+ by ~1, c+d\Z;T) lies on a real curve, so does the
- canjugate Imaginary“point (@ —i/—1, e—dJ—1) It is
easy to show thatthe'line joining the two conjugate points
is real, the eq tion of the line heing formed by the same
rile a8 whemthe points are real ; the equation ig

o\ d(x_—a)=b(y-0)-

AN :

107, Thrning Values. Maximz and Minima. We way
disephfinate maximum and minimum turning values of an
or';%natc by the following eonsiderations. When a straight

Jine is_dmwn parallel to the m-axis it will usually cut a
yurve in two or more points. Now suppose such a line
' %0 move up or down while remaining always parallel to
the x-axis. When the line approsches a turning point
of the curve two of the points of intersection come near
each other, and when the line reaches the turning point
these two points of intersection will become coineident
the line will ascend to reach a maxhnum and descend to
reach a minimum turning point.- The ordinate of the line
when the two points of intersection coineido has a tarning
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vatue; it further ascenl causes the two points of inter-
geetion to become imaginary, the turning value is a
maximuin, while if further descent causes the points of
intersection to become imaginary the furning value is a
minimnim. _ :
Translating these graphical considerations into analytical
form, we have the following rule: : N
Tet f(x) be a given function of = Find a value of gAN
such that the cquation f(#)—y =0, regarded as an cquafiop
in @, may have equal roots; if y, be any such value, and
if on luct‘eas_ﬂ.ng 3
' decreasing K
the roots of the corresponding equation fla)=y >0 become
— . 1maximam
imaginary, then yyisa . . oo
As has been pointed out in § 1048fhe tangent at a
turning point is parallel to the w-axid, but ib 1s possible
for the tangent at a point to be jparallel to the w-axis,
and yot the point may not be g,jtdrning point. :

4, a little, two (or an even n,ui\hiaer) of

turning _)f{\ljxe of fla).

108. Calenlation of Tur.niné: Values. 'The following ex-
amples show how the abaye rules are applied. It may be
noted that the turnilig valne of a quadratic function
@’ +be+te is thesardinate of the vertex of the parabela
which is the gm}gh\%f-bhe function (§ 95, Ex.1).

Ex. 1. Tind the ‘bﬁrniug values of a{r—1)(#—-2).

it yomo(y QUG — )= ~3ui+ 20 then the squation to be con-
sidered is IN 23— 32242 —y=00
'"\so v
Compaging. this equation with squation (c) of § 106, we ses that

=8, 9=2 and = —y, so that the discriminant, J say, is
N\ D=32427y%+ 108y — 36— 108y =275 — 4.
ND=<0if y= 4+ 9/33, and D bocomes positive when g becoines greater
\than 272,73, and also when y becomes Joss (al ebraically) than —2/34/3.
[‘}%e burning values are therefors 2/34/3 é‘ niaximnm) and 233
{a winimum), Compare § 104, Exzample 1.
Fx. 2. Find the turning valves of 2o 1o
+ 5 Find the turnibg values o - 57 2oy
Zi-a+3
e’
(2 yyat (1 +)2+E-1=0

Let y= and treat this as an equation in %, namely,
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The dizeriminant 5 of this equation is
D=(1+yP— 42—y} y)= ~ 3P+ 22y~ 23

The roots of the equation D=0 are 607 and 126 approximately, so
that . D=—3(y-60T)(y—126).

The graph of —3(y—607)y—1268) is an inverted fostoon, tha
abscizsa of any point on this graph being denoted by 7. O beootuby
negative when y becomes greatér than 6707, so that 607 is a maximuh
turning value ; O hecomes negative when y becomes less thad g6,
80 that 1726 iz  minimum turning valug. 7N\ *

In disenssing tho sigw of a quadratic funetion the method explained

in the Examnples to § 95 will be found useful. £

<

Ex. 3. An open tank iz to be construeted with %S;}'l]}].l‘c basc and
vertical sides to hold a given quantity, o cub. ft sgf\water ; show that
the expense of lining tho tank with lead will le3¢ast when the depth
is half the width. \ : '

Let the side of the square base be = . ;mz'[“bhe depth of the tank
¥ ft.; the capueity of the tank will be 2% €a¥. ft., and this is consiant
and equal to @ cub. ft., so that » and plre)tonnected by the equation

The expense of Tining the ta.’n:k is directly proportional to the
surface to be covered, and thimgurface is (224-4xy) sq. .1 we have
therefore to find when (2% +4&§¥is 2 minimum. Denote this quantity
by z and substitute for yMbe valuo wfe? given by equation (i); we
then have to consider thi€equalion

’ Em:\ﬁ + do or @ —zpd A0 e {ii}
¢ \n T . .

Comparing wjtbeqlmt{on (o} of §106, we find g = —z, r=4a, o that

the diseriminalithd is given by the equation
AN D= 443207410862 — 27 eeovirrerireeis (if)

D=ydhon (10867 and, when 7 is u little less than (1084,

D is poditive, so that J(1084%) iz the minimurn: value of 2
note the minimum value by z. When z—2 equation (i) has
o0 equal roots, and the value of each of these iz — 1% o & {§ 106}

or
N . - 1
(Y7 Let #,=6q/z, then the corresponding value 7 of o s afn®; 7y and

— 2z 7
NN

\ V" # give the depth and the widsh when the expanse of lining is least.
Now PP 4 "
h_ oy e ex’ 10848 1
# 2P at 31645 Y16 3
by inserting the values of #, and g Thus g =1,
In the next set of Exercises various examples are given

which require the formation of an algebraic expression like
that denoted by 2 in Example 8 above; indeed the chief
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difficulty of such problems usually lics in the correct choiee

*of the independent variable @ When the gradient ean be
found, the procedure shown in § 104 for finding turning
values may he used.

Thus, in the tank prdblem, we have, by squation (i1),

473
== J{?2+ —
&
and we find for the derivative of 2

4 af— 4 . \
Dz;.g.x_i:i;:M,

s N

D=0 when &=#{2a), and z changes from negative to noditive as
@ changes from u value that is a lttle Jess than 3{2e)goawalun g
is a liftie greater than #(2a4). Henee ¢ is a mivimom Shen 2= ¥(20).
But, by (1), when »=3(2u) we find ¥ =1 ¥(2a). T{cl‘cfm'c when z is
a winimum, =4, or the depth is half the widthg™

N\ N
EXERCISES XXVIHY
1. Calealate the Lurning value of @?’-‘:‘Q;}?—l {zee Fig. 70).
2. Prove that tho graph of y=(22 #){(x~1) has no turning valne
{see Fig. 77) N

3. Calenlaie the turning, vlues of the following functions, and
the eorresponding values ofSe

. . |
(i) #— =z ({s’g}‘ﬁb) ; (i1} e+l (Fig. 943 ;
' . afet ]l
N W) ey
- e —2) | o eE-ztl
R -

N (5= 1)z —2)
. \N‘m) (e—m) (e dy

:"\‘?'; Caloulate the turning values of the following functions :
~\J

\

} . .. 2 - .
\ . () 24z -2) (Fig. 73); (i) «++1 T (Fig. 94);
e R _Bp1 g v O
{iti) s (Fig. 95).

5 If (A, k) is a turning point on the graph of y=f{x), find the
forms of the first approximations to the equation of the graph when
t_ & origin is shifted to the point (%, £), (1) when % iy a maximum
vadue, (2) when 7 is 4 minirum value.

WA

x:/
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6. Shift the ovigin of the graph of y=»%»—12) to the point (2, -4),
and then caleulate the turning values of #¥w—3), stating which is g
maximnm and which is a minieamn.

7. What change of origin will transform the equation

y=(z-1){x—2W»-32)

. - . N\
into an equation of the form n=£%+¢£¢ Find the point of inflexigh
on the graph of the equation, and calenlate the neximum and m LI 1tk
values of (#—1)(z—2)(x - 3). : &

'\S ¢

8 If (w—#&P is a squared factor of 4% — 42— ¥="0, talculite the
“value of £, and the eorresponding values of 3. Flence findwghe tnrning -
values of the graph of y—wz—4); and determingsfromi a rough
graph which is a maximum and which is 5 111:'Lnimum‘\§ / ’
$ELr
% — 5L 1
an equation in x, where y is known. Dragr aJrongh graph of how
the diseriminant varies as ¥ varies, and dlad’ the turning values of
(Rta+1)i—a1), 2\

9. Find the discriminant of the enuation ¥ regarded as

. X 3

10. Find the diseriminant of the gaqfuaﬁ:ion
=it 4 38.%7::1: V(i + 62+1)

regarded as an equation in , 'Wh;e'i'e ¥ is known.. Draw a rongh graph
of how tho diseriminant vuaigdtas ¥ varios, and find the maximum and
minimum values of (#2+ 38z + 1) 224 8 + 1.

11. Find the greatestsrectangle that esn be inscribed in a triangle '
ABC of base o and %ﬁg'ht , one side of the rectangle tying along H0
and two vertices ]?N ng on 48, 4 respectively.

12, A shepherd has a len gth 7 of netting with which te fence throe
-sides of a Bedtahgular picce of a ficld, the fourth side being formed by
a dyke aleeddy made, Find the dimensions of the rectangle which
conbla,ixgs‘;t o greatest avea.
I part of the netting has to be used to divide the area into two
recbangles, the division being at right angles to the dyke, what wonld
JLe'the dimensions for the groatest ares 7 -

I_n what ratio must the wire be cut if the sum of the ureas of the
cirele and the square is the least possille

14. From two points A, B on a straight line fwo straight lines
AX, BY are drawn perpendicular to A B and on the same side of 4B ;
©is a point between 4 and B snch that A0=g and CB=5; from ¢
twa straight lines €0, 0 are drawn at right angles to each other to
meet 4X at Dand BV at £ It Al =z, lind the value of
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(i} when 404 BE is a minimum ;
(iiy when DF iz a tainimum ;
(i) when AD4PDE4 BEis a minimum ;
(iv) when the arca of the trapezium 4 DED is a minimum j

“(v) when the sum of the areas of the triangles ﬂ.DC BCE
is a minimum ;

{vi) when the ares of the trian gle DOE is o minimum,

15. Through the point A (s, ) in the first quadrant a straight lipg™ \
is drawn cutling the axes 0.X, OF on the pumtlve gide of the or 1g1n
ab B, (’thpecm»ely Find
(i} the mintmum value of the area of the triangle OBC
(i) tho minimmm valoe of OB+ 0C; % \
(Hl) the minimom valee of B4, A ' ' ,,"\."
B4 AC J
BC? \
16. A sleaight e of givon length is div rideditte two parts so that

twice tle square on one Hrut with thrice the ﬁqua,re on the other part
is the loast possible ; find the ratio of the, twa purts.

(iv} the maxiimum value of

17. A, B, ¢! 1 are the vertices in Older of a variable guadrilateral
suh that AB=CD= s, @ constantgs and AC=BD=¥, a.constant;
prove that B+ A D 1s Jeast when, ﬁﬁUD iy a vectangle.

18. The perimeter of a tr nmrle iz given, and the length of one side
i bwice that of ancther how that the ratio of the shortest side to
the pavimeier lies bet\m ee,u\ und 1, and that the area is greatest when
this ratio is (11 — &/ 1.3 8./

19, Prove thut 04, -] for all positive values of @

1:_

a0, D1qcuss f,ke ~meq1l‘ﬂlt‘} 3_ ] = L

21, Ping ’\he maxinmum snd minimum values of the ordinate of
* I\ (et )+ 4=
22 ‘f erify that y is a maximum or minimnm at the points (1, 1)
‘o the curve g — By 624 Ty —6=0,
""”d discriminate between the alternatives.

¢ 3. Tnvestigute the mammu m and minimum values of the following
Hnetions ;

tey B ETE 43 BRL100F2 | Ao 2EHE
(1\.) t)_;u_J’_&? +0’ v zz_._m-_:_‘g, ! (\l) x¥42x 43
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24. 1If the expression
i + 2hz 4 b
P L
be capable of all real values for real values of x, prove ilat
alV<h® and (ub —a'bf < d(a'h—al’ YU - H'h).

ar?+bute . o &\
23. Prove that for real values of #, P v will be eapable Q\
all values whatever if 82> (a+¢), that there will ho two %%
betwean which it cannot Tie if dae<B<(a+ e, and iwo value@&w n
which it must lie if 52« dae,



CH. XV. § 109, 110}

CHAPTER XV. : .

¢\
APPROXIMATE SOLUTION OF EQUATIONS. O

109. Beal Roots of an Bquation. If f(z) is an ibegyal
function of @ the vewl roots of the equation f(z)&0<can be
found roughly by graphing the equation y=y{B)and read-

" ing off the abscissae of the peints where t{e,gra-ph meets
the w-axis, I

In ¥ig. 70, p. 190, is shown the grsiplj}\ ot y=p~2r—1

for the range from #= —1 to =3 \From the graph we
see that 241 and —0'41 are appreximations to the roots
of the equation 7% -9 _.1=f)

By now choosing largex! :};cale unifts and nmkil_lg an
entirely new graph of fhe equation y=u'—2r—1 In the
peigh‘nourhood of =241 we might obtain the correspond-
g root to more t aQi hvo decimal places. A third graph
with still largersscate units would lead fo a still elosor
approximation tduthe root, and so on. but oncs a _l’e:?,l
oot has heeth¥dclimited,” a more cxpeditious method is
available, \’sff{ich will now be explained. The 'met-hod Wlll
be first_gpplied to the solution of a quadratic equation,
so thabuthe student may have the whole process uder
confablhthe ordinary method of solving a quadratic equation
andMhe graphing of a quadratic function being quite

“fartiliar, : '
110. Approximate Solution of a Quadratic Eguation. Let
the equation he 1 =0

Denote the function a?—2:—1 by f(z) and graph the

Squation y=f(w) (Fig, 70, p. 190). A real root of the
equation f(m)=0 iy seen to lie between 24 and 25; 1n
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technical language one root has been “delimited” We
want to find & eloser approximation to this root.

Tho gradient of the graph is 2&—2; near x=24 the
gradient iz positive and inecreases with = TLet 4B
(Fig. 100) represent the graph from x=24 to 2=25; the
: ' origin, O is not shown, i\

3 the diagram. M is, the
projection of A, aady ¥
that of B on the“¢-axis;

M__.Q s P is the point \where the
PT N X arc AB and. @ he point.

where the chdrd 4.8 crosses

Fre. 100, ‘the z-axi§ ) OP represents

the exadtvalue of the root
we are sccking and OQ an approximation fo it; we have
now. to ealeulate O W
Let M¥=Fh, MA = —¢', NB=0854he numbers %, ¢/, & being
all positive (the ordinate MW is negative). Now .the
triangles A M), BNQ are sidiflar, and therefore

S _ox

But each frachion is cqual to yw that is, _h—
&V o 5 a b
ThereforeN\ M Qz_)"_"’"(.h’ .,
T oM N

We haye also

DT 0M=24, MA=—o =f(24)=—004,
A\ ON=25 NB= ¥U=f(25)=+025
\ M¥=0N-0M=01,

:\ 80 that =01, &=004 ¥=025

and therefore MQ :9:(%01: 0014,
0Q=0M+ MQ=2414,
In obtaining this approximation we take the point @
at which the chord AT erosses the z-axis as approximately
the point at whicli the arc AR crosses ; henes the name
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of {lie chord rule by which this method of approximation is

known,  The substitution of the chord A B for the are 4B

en_ables us to ealenlate MO by means of the proportion
MQ:MN=u"a'+¥,

and this method of caleulating MHQ is spoken of as the Rule

of Proportional Parts—a rule that is extensively used in
eonnection with all mathematical tables. The rule was also
frequently spoken of by older mathematieians as the Regald\ ™

Fulwi, or the Rule of Falsehood, or the Rule of False Position.
We can now go on to elogser approximations, by talking
2414 and 2415, instead of 24 and 25. We have,})
F2414)= —0-000604, f(2415)= +0:002295,
so that the curve crosses the m-axis betweeh'the points
for which = 2414 and z=2415. . We 119\'&\\.t-ake
OM=2414, MA=F(2414)==6000604,
CON=2415, NB=f(2415)CH 0002225,
MN=0N—0M=0001,.3%
80 that now . &Y
h=0001, o =0:000604, & =0002225.
Putting these numbeys\'in the formula for W, we get
" | )} L )
foh 00002135
M‘QL A 0 ,
_ When 2524142135 we find by caleulating f(z) that f(z)
I8 negativedwhen =24142136 it will be found that
f(2) is Pasitive. We have therefore found t-he_root with
an error that is less than one unit in the 7% decimal place.
Theskesuit can be confirmed by solving the quadratic m
“theordinary way. C N
\/ We could now proceed to » closer approximation if that
were wanted, -
Fix. Find correct to 4 decimal places sthe veal roots of the
foliowing equations : ' ’
) 2-22-2=0; (i) T2+be—1=0; (i) 47 -0243=0
by the uge of graphs and the chord rule, and verify the results by

solving the equations algebraically.

1

"N\
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111. Use of two Graphs. In delimiting the real roots of
an equation it is often advisable to use two graphs.
For example, let us try to find the number of real roots

of the equation .
' =P B=0 (1)\
and to obtain rough approximations to their values. \
Write the cquation in the form (\)
pR—gt= — 2, ' . O
and then graph the equations N

Y= —a® y,=-—x42 M‘\gg
with reference to the same axos and with’the same scale
units for the two enrves (Fig. 101). ."I\‘\Llw:': graphs have only
$

s
I L g T | i L :
it - K NL W
H TR
7] -
I\ L
i i ]
% :
B .
F N ]
T .
. g :
! i
1) 7 T
u L !f' - '
I !
N 1 Fi| ]
= -
Ny AN K (;‘
2N/ ’ 1 :
4 » L
P\ :2_/ 5] e=ral vl
& A = ;
\w: 1 : 1
R\ Fia, 1.

N :_D'UG point, P, in eommon, and for that point =y, lfa
\\; * 18 equal to OM,. the abscissa of P, then
MP=y, =0 —u?, because P is on the graph of ¥,;
MP=y=—q +2, because P is on the graph of ¥,
Therefore
F-a’=—a+2 or gf—a’tu— D=0,
that is, @ is a rool of equation (1)
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Agaip, the graph of 7, crosses the p-axis at 4, where x=1,
and the graph of y, erosses at B, where z=2. The root @
thuns les hetween 1 and 2.

Wi have thus shown that equation (1) has only one real
root, and we have delimited the root.

Fx. 1. Prove that the equation .
2Pt —3=0

has only ene real root, and that it les between 1 and 2. R ‘\
Hx. 2. Trove that the following eubic equations have only onc.réal\
root, and delimib the root & _ . N
(i) BB+ -3=0; (i) # -2 —5=0; (iii} 2% 42245057
(iv) ke —1=0; (¥) 22— br—6=0 ,“>\
Ex. 3. Find the vumber of real roots of the following' equations,
and delimit sach voot : AN '
() B =R -5=0; (i) 10:*-102%+1=0; (r'\)wcz— Bat-z+1=0;
(iv) st —o? +a—2=0. D\

112. Combination of two Craphs and the Chord Rule.
Having delimited a root by thiesuse of two graphs, or by
any other method, we can apply the ch ord rule to_ﬁnd closer
approximations. Lf the eguation to he solved is fz)=0, we
first find two numbers, @ and b say, between which a root

lies; the expressions ({aﬁ and f(h) will have opposite signs.

Take the equa-t-ip&

oWy =ad =it +a—2=0.

We have,gepn (§111) that this equation has only one
real roof, iof that it lics between I and 2. Now the
gradien‘{\bf ‘the graph of f(z) is given by .

N Sley=3x"—Za+ 1.

S When =1, F(2)=2, and when @=2, Flo)=9; as .
iNcreases from 1 to 2 the gradient increases steadily from
2 to 9, so that the curve rises pretty rapidly. Before
applying the ehord rule we try to obtain a closer delimitation
of the root.
We find, by trial, that fiz)= —(-193 when &=13, and
Fa)= 40184 when =14, so that the root lics between

13 and 14,
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The figure and relations of § 110 will apply here.
OM=13, MA=—&'=f13)=—0193
ON=14, NB= ¥b=§14)=-+0184,

M¥N=0N-0M=01, A
so thab h=01, o'=0193, ¥ =0184, ey
and therefore MQ _ ke 0051 O

TRt

0Q=0M+ HQ=1351. .\';";

To test this approximation, as well<ag to prepare for
a closer approximation, we caleulate tho value of ) Lo
w=1351 and »=1352. Wo find, to4 decimal places,

J(1851)= — 00084, f;({@iQ) = = 00046,

Both 1-351 and 1-352 a-re,'tticﬁ' smail, and we ust go on
caleulating f(z) till we finds positive value,

F(1353)= — 00008,  £(1:854) = +0:0030,

80 that the root is #4883, eorrect o the third deeimal place.
We nmight now~iake the values : '

FL0001, @'=00008, b=00030,

and calcu}a;ﬁefthe new value of ¥}, It will be found that
the roof'lies between 1:35320 and 1-35321,
.O\u' :

. f3 The Tangent Rule or Newbon's Bule. Therc is

J&hother rule which is so generally usefnl for the solution

2ol equations, whether algebraic or transcendental, that we
O shall give it here; it was stated by Newton. )

@) In Fig. 100, if we draw the tangent BY at B 1t will

[l betwseon, the ovdingte NB and the curve PR, and if T

is'the point where BT erosses the e-axis, O will obviously

be & better approximation to OP than ON s If thed

ON be taken as an approximation, we take OT as the

?)e;t better approximation, and we shall now ealeulate
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NB

We have ;—i = gradient at B=wm, say;
'If L
thercfore TN = vy = LA
Hb (¥ .
and O0T=0N-TN=0N—-b/m.

Apply this to the eqnation of §112, taking ON =14 and
b=0184% We must caleulate the gradient at B.

therefore (8 103) the gradient at B is f/(1'4)=408. N
We now find \\
' o . 0184 1 ors
We now begin over again, taking 1:358> instead of 1+4
a8 the value of ON and f(1:355) o\0V068 as the value

of ¥. The new value of m may be tdken as 38, and we get

or=on-Y = 1-355.9’.@99?-@: 13532,
m oot 38

It will be found that j‘(L‘SﬁSé) is positive and f(1-3532) is
negative. If we go om\lv a further approximation we
must take 103533 to L™fhe value of ON so that B may be

above the axis and Sb\ﬂ"ﬁla.y fall between N B and the curve,

114. General/Statement of Rules. We shall now state the
chord and tagpent rules in general terms. )

Chovd, Ritle. Let a real root of the equation f{x)=0 lie
bL‘t\VGB a’,\@[nd b, the D]]mber{-} f(a,) a,nd f(b) hei I'lg t-hEI'BEOI'('.‘
of 019130%6 signs ; in the diagram (Fig. 100) we have
M0, MA=f(a); ON=b NB=f(); MN=b—a

,..\\

®) “The equation of the chord 4B is

y—fla) _—_}(_(%(_a) (x—a).
When =0 we have 2= 0§ ; thersfore

= __@— —_ )
M I STOL

¢\

fey=vP—a?+a -2, fla)=32—2z41; X \“\
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If o is the approximation we begin with, then the term
_f ((”’) I}
e — 1
Foy=Far "=
is the correction which we add to « to get the next
*  approximation. :

The value for 0¢ may also be written A
f(5) .
0Q@=b——""_(b—a), (
R T
- and if b is the approximation we begin with, tllenthe term
- f({)) M\\
e (b—a O
- =" =
is the correction which we add tonh to get the next
approximation. \“ '

O\ .

Since f(a) and f(b) ave of bpposite signs, one of the
corrections is positive and fhesother nepative: it is a
mere matter of conveniencehich of the formmulae for Q)
we take, N

Tangent Rule. In FigyT00 the tangent BT falls between
the curve and the opdinate at B, and we arc thus certain
that 7' is nearer to @than N is; if we draw the tangrent ut
4, and if that taageént crosses the m-axis aé T, we cannot
be certain that P will be nearer to P than M is. DBut the
tangent ruleNdepends only on the abscissa, the ordinate
and the gigtient at one end of the arc AB; the abscissa 18
the firsttapproximation that we start from.

Aﬁl@tr-}ﬁion to the following statements will lead in all
cases.to the choice of the end of the arce that will give
thevcorrect approximations.

&

AN (1) f(2) and #(b) must be of opposite signs.
\\; " (i1} f'(%) must not vanish as @ varies from a to b.
(ii1) (@) must not vanish as varies from a to b
It will be a good exercise for the student to show thab
condition (i) sceures that there is one root between @ and b,
and that condition (ii) seeures that therc is only one.  The

third condition secures that there i3 no point of inflexion
between A and B, '
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Now let B be that end of the are at which f(x) and f(x)
have the saime sign ; then the tangent will fall between the
ordinate NB and the curve AR, and we shall have, in
the notation of §113,

o7 — ON_():‘dina,t-e at B b J(b)

gradient af 5 7y

The equation of the tangent at B is ‘ L\

y—J(0)y=(=—b)f (b), O
and when y=0, z=0T; this gives another proof ofthe
above valuc of OT. A

In applying the rule we must verify at every«%tige that
7(5) and F°(b) have the same sign; f"(=) mdsh\pot change
sign, by (ii1) above; and therefore if the ordinate at Bis
positive to begin with, it must ab each subéquent stage be
positive ; if negative to begin with, then)always negative.

N/

EXERCISES (XXIX.

Find to 3 or 4 signiticant ﬁglmés"'the real roota of the equations
1-8 N\

1 #—2p-5=0. 2. /4N 3=0. -3, 20 +6w-3=0.

4, 35812 —5=0. ,5:}\553—.1'5+2x—3=0. 6. #*+a7-1=0.

7. .:L-‘—xz--l-.'jf—2=0\\8. 2t By —4=0.

9, Caleulale b]mimbt of the ermation

' AN 428 - 4471 1624+ 10=0

that lies betﬁ"g}ﬁﬁ and 3. .
) 14, Cﬁ{{u}éte the root of the following equation that lies bebween

*““Ef‘: 2t~ 1233+ 120~ 3=0.

ALVA sphore of radine unity is divided by a planeinto two parts
#arhose volumes are in tho ratie of 1 to 2. Show that the distance o
\(Jrf the plane from the centre of the sphere is a root of the equation

323~ 9x42=0,
and find = ' -
12, A hemisphere. of rudius unity is divided into two equal parts
by 2 plane parallel to the base, Show that the distanee # of the
Phane from the base ix a root of the equation

.',3-" Bl =0
and find s, ; e i
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CIIAPTER XVI.

ASYMPTOTES, A

' '\’\.
115. Division by Zero. To divide a Gpmber o by 2
number  is to find a third number whisly when multiplied
- by, will give «. If, however, » happens to be zero, th.cre
is no such third number unless « istaldo zero, The working
- rules of algebra are carried out\ogthe assuiption that the
produes of twd numbers is Zerowiwhen one of them is 2190,
It then = is zero, the productef © and any other number is
7ero, 80 that if @ is nobwdero there is %o nusmber which
when multiplied by will"give @, and therefore there is no
answer to the question, “ What is the quotient of o by
Czero ! If howave{r, & is itself zero and =z also ZeTo, then
any number whafsver will, when multiplied by x, give «;
in this case thove is no definite answer, and the symbol
0+0 has véally no meaning at all Tt is perhaps worth
noticing that‘even if we assume, for the sake of argument,
that the“symbol 0+ ean have a definite numerical value,
we shonld land owrsclves in all sorts of absurdities. For

exafuple, 8x0=0 and 9x0=0;
‘fi‘;iwrefore ' 8X0=9x0;

O therefore 8X0+0=9%x0+0; -

" therefore 8X(0+0)=9 x (0 0).

Now divide by the « pumber (=0, and we find that we
have proved that 8 ig equal to 9.

We have thercfore to exclude division by zero from the
algebraic operations. Tp i possible, however, in certain
cases to give a useful wnierpretation of a quotient, which in
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the course of an investigation is in general quite definite,
but for some particular relation of the variables of the
problem assumes the form a0, _

In preceding scetions (eg. §88) we have tacitly assumed
that the form 1-+-0 mecans “infinity,” and have used the syin-
bol 0 for infinity; the circumstances in which this symbol

. was used showed clearly encugh its graphical interpretation,

and that was all we were coneerned with. In all the caseg\J)
the process was essentially that of allowing the denofni
nator 2 of a fraction such as 1/z to become smalleriand
smaller, tending to zero. As @ gets less and lessy e gets
greater and greater, and the corresponding poib-on the
curve goes further and further off; we say thabavhen =0
the point is “at infinity,” and we then say that' the symbol
10 represents the “number” infinity. Bﬁ} this “number”
is not a numbcer in the same sense that2 is a number, any
more than “infinity ” is a point ig\bhe same scnse thab
4 mm Fig. 77 is a point. The cireuistances in whieh the
symbol a0 arises arve essenti;biié the -whole matter, and
we now give some illustrationsiof the utility of this “ideal
number” and of the way hiwhich it arises in investiga-
t1oms, Fa

116. Infinite Rop '6£; Simple Fquation.. Let B (Fig. 102)
be the point (0, 6 yeferred to rectangular axes X'0X,
¥Y'OF; the numbdr b is sup- .
%Oszlad to be nat'gero. Through Y

raw thelstraight hne of

g)l’adient:afba most X'0X ot ™~

£, \\ B
Thésetuation of BP is . .

LONY y=amt b 1 ¥ © P\X

) To find OP, we put y=0 v
and solve the resulting equa- Fig. 102.
tion for 4, '
thus D=0, e (2}
which gives g ....é OP= —E,
= . a? o

Provided ¢ is not zero.
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Now, as ¢ gets smaller and smaller, (P guts lurger and
larger; the line BP turns about B and the puint: P weoves
off, say to the right, along X"0X., When « is very small
2 18 very large and P is very far off

When =0, equations (1) and (2) take the forms

Cy=024b, ... {17, D.atb=0_.,.. (2. A

Since b is not zero, equation (27 has no solutiqn\} but
the fact that equation {2y has no solution eobrésponds
with the geometry of the casc because, singdha =0, the
line BP is now parallel to X'0X, and therefore does not
meet 1t. \ '

We may now, however, s @ convenidnt Jorme of speech,
88y that (27) has a voot, namely oc,sgid, correspondingly,
that BP, when it g parallel to X0OX, does meet 15, not
at any ordinary point, but “ &b nfinity.” To say *two
straight lines meet at Infnity % means exactly the same
thing as to say “the two straight lines are parallel.”

As an example, consider{Mig. 33, p. 90. "We proved that
the line A'C'B'IY is ent, Eysthe rays 04, OB, OC, O of the
harmonic pencil ({4 'BOI)), 80 that (A’B'C'D)y is 8 harmonie
range; we may thefefore write

OA4C A a4

Q!

{ S e e 3
\ \\ U/Bf - !);_B; B,_D,- ( )

But LB AR + B, 50 that
N AD_ Ax o e
:"\.. B’D!_E’D(_I_‘l. ........................ ( )

..~'§5\v turn A'B’ shout ¢ till it ig nearly paralel to 0D;

\C the ratio A'BYB'D is now very small, so that, by (4)

) A'D'[B D is nearly equal to 1, and therefore, by (3), A’C//C'B

15 also nearly equal to 1. When 4’5 ig exactly parallel to
OD, A’B" and 05 “moet at infinity *; D' is now called “the

point at infinity ” on A'E, the ratio %}g or, ag 1t i3 some-
. . A’ .
times written, }_:TZ% W exactly equal to 1, and therefore the

ratio A'CIC'R is also equal to L so that € is the middle
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point of A5 In fact, A'F is now X'V, which (§ 45) is
hiseeted at (7. It is convenient to use the phrase
“(X'¥V'C'x } is a harmonie range.”

Tf the student goes back to § 4 he will see that the posi-
tion-ratio AP/PE of a point P with respect to the base
points A, B is never equal to —1 for an acfual point, but
continually approaches —1 us P gets further and further
away from 4 and B; —1 is the value of 4o /0 B, or (ag'\y
ahove) Ao /B oo 18 equal to +1. O

[t ' is a point that is nob on the line A8, and we gpeak
of the line joining ¢ to  the point at infinity ¥ on AR, then
we mean the line throush ¢ parallel to 48, e@iey other
straight line through ¢ meets 4B in an dctnal point.
Henee it follows that any number of parallelstraight lines
may he spoken of as “intersecting” ep meefing” af
infinity ; a systom of parailel straight.Jipes is a system of
coneurrent lines, the point of conm;rfjeﬁce being the point
at infinity on each line. A _

Thongh this mode of speechimay seem strange, the
student should practise it heSwill soon hecome sonvineed
of its advantages and will.dge that it involves no contra-
diction with the ordingrw propositions of geometry. He
must, however, alwayg.remember that the point at infinity
on & straight line isdaw’*ideal” point, just as infinity 1s an
“ideal * number.s, Purther, we must assume that there is
only one point gt infinity on a straight line and not two.
BP (Fig, 10208 bo turned so as to be parallel to /0,
whether I2yinove along OX or along OX. When B is
not paraflelyit meets X'0X in only one point, and we must
assumecthiub when it is exactly parallel it still “mects
X’Q-Y at only one point.

o N :
) "1,17‘ Infinite Roob of a Quadratic Bquation. Leb a guad-
Vratic equation be written in the standard form
e+ b4 c=10;
— b4 B2 — dac) —b— J(b—400)
— of =77 "og ’

m=- _
2

Provided ¢ is not zero. ILeb us transform the expression

then
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for the first root so as to. see ils behaviour when « is sup- -
posed to be very small. We have

—b+ (P —dae) _[—b+ (B2 —dae)|[ —b— J(b2 - dac)]
20 o 2] ~b— J(B* —dac)|
2e Q
 —b— (B —dacy A

When « tends fo zcro, /(3 ~ 4a0) tends to JB)enband
the root tends to ~c/b. Oy

Again, when e tends to zerc, the numerator $Tthe second
root tends to —b—/(6%) or —2b; the nunidical value of
this root thercfore becomes greater andgareater as o gets
nearer and nearer to zevo, v

If then a is exceedingly small, ongxedot of the quadratic
equation is mnearly equal to —c/f'@hd the other is ex-
ceedingly large.  We are thus 16410 the following mode of
speech. _

When =0, one root of thé,quadratic equation

' b4 e=0 ... (1}
is —¢/b and the other¥adt is infinite. '

Of course it mggNoc said, and said truly, that if a=0
equation (1) is {ro‘b a quadratic, but is a simple equation,
and thereforg has only one root, namely —e¢/b.  But the
advantage ofe\ﬁhis other way of stating the matter lies in
the fact phab’whon, in treating a problem, the language of
infinite xgdots is introduced, a quadratic equation, and not a
simplexgquation, is the general expression of the relations
iwplied in the problem, and the infinite root has a definite
g]&rhetrical interpretation.  We may say that we make

wlise of the infinite root when a quadratic equation “is In
*y tquestion” or “is expected.” (Sce § 118)

IE ¢ =0 and also = 0, while ¢ is not zero, then both roots

of the quadratic equation are infinite,

118. Geometrical Illustration.- _Consicfer the graph of
the equation '

y=9;+1+§ or wy=attaodl e (L
represented in Fig. 103.
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Equation (1) is of the second degree in @ and y. Any
straight line, y=wux+b, méets the graph in two points,
their abscissae being the roots of the quadratic equation

a{ae+b)=a? 4o+l . e (2)

Whenever, then, we are discussing the intersections of a
straight line with the graph of equation (1), & gnadratic is
to be expected. A\

For example, the straight line y= 3@+ F meets the graph{

where ooy ' '
w{ix+L=a’+ae+l or 22—~4x+43=0, _\.
that is, where 2=1 and @ =3 (see dotted line in diageam).
W
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“ Dhe line ¢ in Fig. 103, the equation of which 18
y=a+1, .
does not meet the curve at all. Solving this equation and
equation (1) as simultaneous equations, we have
' m(w+1)zx2+m+1;
that s, 0.2%4+0.2+1=0.



286 ANALYTICAL GEOMETRY. {cH. xvL,

Since a quadratic cquation is expected, we interpret this
form of equation to mean that both roots of the guadratie
are infinite,

Next take a line parallel to QQ', say y=a-4k. Solving
this cquation and equation (1) as simultaneous equations,
we get N

w@+k)y=r+e+1 or 0.224(h—1)u—1 =0,

We now lLiave one infinite root, and, so long asd=l] one
finite roof, namely 1/(k—1). When # tends, 6 1, this
second root also tends to infinity ; the parallel 13 Q@ tends
to become coincident with Q. which megtg the curve in
“two coincident points at infinity.” Q@CIy*an asymptote of
the curve.

The y-axis is also an asymptoteTo find where the
y-axis meets the curve, we solvé ¢1) and 2=0 (that I,
z=170.y) as simultancous equatibng ; the equation we geb is

0.4°+0, 4 1=0,
which shows that both rofts are infinite, and therefore that
the y-axis meets the_@urve in two coincident pointg ab
infinity. Al straiohtInes parallel to the 4-axiy meet the
curve in one poin ut a finite distance and in onc {(1deal}
point at infinitye\ '

We remind{l}e student of the purely conventional use of
the phrasey nieet at infinity ”; the example we lLiave just
diseussed ghows how infinite roots come to be considercd ab
all, andhbw it is possible to mterpret them by pieturing the
nterspetions of curves as the poiuts of intersection move off
to @iyvery great distance. We ave also led to s new defini-
Fon’of an asymptote. Let us draw any straight line, which

WWWe may call o soarch line, say y=az+ b (Fig. 103), where
¥ we suppose b=|=1; this line will eut the eurve (as a rule) in

two distinet points, Now furn the line about the point
(0, B), in which it cuis the y-axis, until ¢ is nearly cqu_ﬂl
t0 1; one of the points in which it meets the curve will
have gone off to a great distance, and when ¢ =1, the line
will be parallel to QF, and oue voot of the equation

_ _ m(cm:-{-b)::r:-2+x+1
will have become infinite. Next move the search line
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paralle] to ilself till b iy nearly cqual to 1; the second
point of intersection is now very far off, and when b=1
the line colneides with @), and the other root of the above
equation has become infinite. In other words, when our
line hecomes an asymptote it mects the curve in two
coincident points at infinity. Hence the definition

Definition. An asymptote to a curve is a straight line A
which meets the curve in two coincident peints at mﬁmt,( N
Or, a0 asymptote to a curve is a tangent whose point of, con
tact iz at infinity but which is not itself at infinity. £ N

This definition of an asymptote is not so generdVas that
given on page 207, but it is specially suitablg~for curves
represented by rational algebraie equations. ! :

N .
118, Conditions for Infinite Roots. Ithh} equation

aw+b=0 “x .................... (1)
put 1/z for », and then multiply Jy z; we get
o+ bz;: 0. eerene e eren e (1)

Now when = becomes wery small @ becomes very large,
and a8 z tends to zergl® tends to infinity. But 1f a=0
and b=1=0, equatio %11)* shows that z=0., Hence the root
of equation (1} s infihite if a==0 and b==0. _

Applying the same transformation . to the quadratic
equafi IR 74

faion \\ ‘ Gt D=0, v (2
we get, (\© a+bste=0....... UUTTOTUPP (2

-. Ql’%e’\’-’&]ue of 2 is zero, and therefore one value of x is
infifiite, if =0 and b=[=0; both values of 7 are zero, and
"*Fllf‘rgfore hoth values of # are infinite, it =0, b=0 and
\rl _
Quite generally, the equation

aoxn_]__ a1m11-1+a_2r613~2+ . _I_alrwm.-?‘_l. er +(L.n=0
has one oot infinite if a,=0, @,==0; it has two roots
mtinite if ¢,=0, a,=0 and a,==0: it has » roots infinite
i a,=0, a,=0,.:., ¢y ., =0 and a,=F0.

A L
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EXERCISES XXX

Solve the simultaneous equations in Examples 1 5, staling in each
case the number of poinis, (i) at a {tnite distance, (i) at infinity, in
which the graphs of the equations mect. The diagrams roferred to
show the graph of the sccond equation. :

L y4+1=0, gle—T)=2—= (Fig. 77).
2 O\
2 y=a+l, ymatlog (Fig %), AN
. g . N R 4 Dt
3 y=x+1, Fl:?nhﬁ- {Fig. 95). ,,'(‘“.
4 =241, yla—D=x(z—1). '\\
"
5. (@) #=0, 2(y—2)=1; () g=2, pe)=1
Draw 1he graphs. ) \\;
. Ry 1
8. (o) w0, 2?/=:¢.-‘—2-1-%; (=v—2, Yw=x- 9+E'
v % 3
Draw the gvaphs. OY

T @ o=1, (o i)y—r-Bs1;
B y=a+l, (r-Dhte-1=1
Draw the graplish
” . 1
8. Prove that t{& asymptote of the curve y=,’f+l+{giﬁ‘3

. parallel to the 4 -ai:i;}is the line »~1, and find the obligue asymptote.
Graph the equ:ié({

9. Grapk :'the eqnation .:-:'=2y~3—13 and prove lhat y=0 and
#=2y— are asymptotes. Y
) 103. Sraph the following equations, and find the equations of the
as;;n&zt tes .
N Q) yy~)=1; i) 2y — 5=
R\ W) yly -2+ )=1;  (iv) gy —a+1)=1.
3..\‘;& 11, Pro?c by J}eseending Continued Division that the gfﬂ'Phs.}m
"\ the following equations have the asymptotes stated, and graph e
p equations ; ' :

. {r—=2r—1 .
(i) 3=\—'—~i—€— —); asymplote, y=x—3 ;

(i) _?)(:(_"*";2)(-?% 1)

P i asymplote, y=uz ;
e {24+ D(r+4
. (iif) ='—;§1 ) 3 _asympt-ote, y=a+5,
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12, Find the asymptotes of the graphs of the followin @ equations :

& y=221 e
(iif) 1=”:t—i} ; (iv) y:%
() y= (Toj 52%_12) : {vi) 3;=E:: - ;%Eij% X
13, Draw the graph of 1=:ij l;’;;i o \\' \“>

Prove that y =2 -1 iz an asymptote, and find the voordinatgsef the
third point in which the asymptote meets the curve. g

7 ‘\ ?
120. To find -Asymptotes. We shall now sh"é%‘ how, in
many cases, asymptotes may be found. '
1. By Inspection. Consider the cquation’
' (2 —y—1)(m+2y 5:})%5, ............ el
The equation is of the second deghed i @ and y. Clearly
the abscissae {or ordinates) of th,é:’points in which the line
2 —’y,:—f 1=0
mects the graph of equationi(1) satisly the equation 0=5.
But & quadratic cquadibn is in question; therefore both
roots of this quadr;qtib\ ave infinite, and the line 15 an
asymptote. AN
Similarly 42y —3=0 gives an asymptote.
Sec Fig, 104pp~ 292, for the graph. '
If the ling ’c?;t:+by 4+ ¢=0 meets a curve of the A degrge
(that-is, a/gwve given by au equation of the pt degree in
@ and w}n ‘points whose abscissae are given by an cquabion
of dagres (n—2) in «, then the linc meets the curve in two
poits’ at Infinity, and is, in general, an asymptote. (Of
. COntse, in this statement we may replace © abscissae” by
' ordinates” and @ by y.) Thus
aty=0, 91‘-—?]=0 and 2m—1r+1=_0
, ate asymptotes of the curve given by the equation
(e+y)@—y)2r—y+ 1 +Bu— Uy +0=0:
because each of the factors w+¥, 2 —¥ and e —y+ 1, when
cquated to zero, reduces the equation from the third degree
to the first,
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IL By Desconding Continued Division, Sce p. 206,
II. By a Search Line. Consider the cquation
By =By =0. ..ccoorriiieneia (1)
Use y=mz-¢ as a search line. "o find its :i:r.;tersect-ion,s\
with the graph of (1), put ma ¢ for # In equation (1), ad
arrange the resulting equation as a cubic in x; we ggjis
(41 )22+ B(mPe — m)xt + 3(me — )z + 63 =, v (2)
Two roots of this equation must becomg jn’,ﬁ’nite; we
therefore choose m and ¢ to satisfy the equatighs
M +1=0, m—m=q .\‘\‘
which give m=—1,¢=—1. Hence theNline given by
y=—x—-1" or :c-!-,g;r;}}T_ =0
is an asympiote. Tt will be nqﬁ(’{d\ that the values found
for 9 and ¢ make the coeflicterit Jof @ in (2) also vanish, so
that in this case the asymptobe meets the curve in three
peints at infinity and nowhigtt else. (Fig. 105, p. 293)

Ex. Apply this met-hocL];(;oﬁﬁd the asymptotes of the eubic given
bo illustrate the first meghod®

IV. From If’-rg?ic?,b-m-Eg’em!.t'i-oqw. The straight line

L\ ATHbY=e¢ {(3)
meets the eieve given by the frecdom-equations
A
Y e=0{t=1), y=t{tE=1).......ccce.r.. {4}

in @ﬁtg for which the values of ¢ are the roots of the
R\ Hon W E—1)+ bt —1)=¢
O B4 (@~ ) E b+ 0=0. oveeeeerernns (5)

Y It the line (3) is a tangent, equation (5) must have two
e;lua,] roots (see Ex. 5, p. 261), and if the point of contact
of the tangent is at infinity the equal roots must make one
or both of the coordinates in (4) infinite,

Now we find, from (4), that (i) @=cc, y=o0, if t=1;
(1) y=o0, = —} if t= 1 (i) x=w0, y=0, if t=0.
We must therefore consider these three cases. '
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M If t=1 is a double root of (5), that equatién may be
written : (f, _ 1)2((95 —1-0) =0
oF (e —2a) 8+ (=~ 20)t+e=0. .....cooe.n {6)

Comparing the coeflicients in equations (5) and (6), we find

a—c=¢—%, b=a—32¢
and therefore a =3¢, b= —%c. Equation (3) now becomes ,{ )\
Zex—dcy=c or 2w—dy=3, O

and this equation gives the asymptote corresponding'tgj“é’q: 1.

(i) If ¢=—1 is a double root of (5), that qua\tibh may
be written -+ 1(at+e)=0, G
and, comparing coeflicients as before, we ﬁr%laz —2¢,0=0.
The asymptote corresponding to f= — 1.3 therclore

—em=c or m='wd

(it} If t=w is a double root+df+(5), we see that a=0
and g—¢=0; that is, =0, ax0. Hence the agymptote
corresponding to t=o0 is y =<0 ] _

The student may find the constraint equation of the
curve and verify these @sult-s by the preceding methods.

¢

& )

121 Approach of Curve to Asymptote. To find on what
side a curve appboaches an asymptole, we may proceed as
shown in the fellrwing examples.

Ex 1, '\“ (2.1;—y—1)(x+2_'y-—3)=5‘_............‘.........A.(l)
One ag ‘ﬁ}[sﬁote is given by Ze—y—1=0; therefore a portion, or
brand;\s\% the curve must be near this line at a great distance from
the gHBin,  Wo may therefore consider the equation
,,,\:’\’." Zx—yw—1=0 or 3/=2.2:‘—1 IR {2}
38°the first approximation to equation (1) for points thut are far off in
the dircetion of the asymptote. i i
To find the second approximation, write equation (1) in the form
, 5 U T A (3)
(2.c—y~1)=mﬁ};—3 or 31.—2x 1 .
For points of the curve, that are far off in the direction of the
aymptote we are dealing with, the value of y 18 equal to (2"""11)
approximately, Qur second approximation is found by putting 27—
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[cﬁ. XM,
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Helte the curve o ppears below the asymplote on the far right an

1478 Tt on the far left (Fig. 104). . o

a’\%ﬁ find the a,pproxi11mt-i§n for the other asymptote, write equAtl’

a Tl) in the form 5 e

AN g=—dotitg, S e

and then in the expression on the right side of equﬂfmz“om}ljl}m

—4x+3 for y; that is, put for ¥ the value in t,er'ms_nOF o e
from the equation of the asymptote we are now dealing

thus obtain

D

1
] = s -
?;==—-.}x+‘g-+m or y=—4r+it

. N S re Appesl
as the required second approximation. Tn this case tho f utlj:e ;EP o
above the asymptote on the far right, and below it ol

(Fig. 104).
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B 2 BBy =0, e (1)
The asymptote is (§ 120}
Fhy+1=0 or y=—9-L o {2)

At a great distance from the origin therefore in the direction given
by the asymptobe represented by equation (2), the curve must be
cluse to the asyruptote, and eguation (2) may for such values of »
and y be taken as the first approximation to equation (1}.

Now write equation (1) in the form

o B O\
x+.“f—x-3_.9.y+?),2’ A\
. _ P Syt Ao
then ztu+l= P gy sarsnrns .,.:..,.,‘....‘(3)
:i:-i- =T I T i T !J!_H__ _‘l‘. T ! T -lé .
F [ T a--$
e Spassayaanrd T
HE Lk | i —( T T
H=—H A 1 F. T
Fh e P e s e
R i S K A ARREE A NN
S By e i —:??F E
HH SN D - & H
AP s _:ir':i H
A .i g T T 11 [u i ;
4 .INH [ i i T i i'.—?'—:r:. _lzq: -
.\ Fri, 109,

AsVgfoe, in the expression ou the right of equation (3), put —2—1
for k\thar,}is, Wt the value of # in terms of & given by the fivst
apgroxination &) We then get '

O AR AT T ‘
./ onusing descending division and retaining only the most impertant
term of the quotient, namely 1/3+%

o~

s4yt+l=g3
that is, y= g 1_;.&_1[,

Heuce the carve appears above the asymptote at both sends™ of
the asymptote (Fig. 105).
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These examples are suflicient to indicate the methods
of obtaining a knowledge of the way in which & curve

“approaches it asymptote. They also illustrate a method

of obtaining approximations to an equation for large values
of @ and y. Corresponding to each asymptote that a curve

~has there is an approximation. In these two exampl

P s
L.\

VU

both « and  tend to infinity; we have already (§14B)
discussed the approximations when only one o' the
variables tends to infinity. \

2N
4 %

EXERCISES XXXI.
&/
1. Find the asymptotes of the curves giv‘r.fm\ by the following
equations : v
(i) 2-o?=1; (i) a®~yi=1 ;..\\.f (i) w{y—a)=1;
(V) G-ty D=1 L 21
() @r—y+1)(r—y-2)=1 3 NN\Fii) gy —a)(y - 22)=1;
(vlil) ay(y -2y ~20)=1; \ 7 (ix) 2p{oty)+attyia0;
(®) g -8y dt=gt N
2. Prove that the shupelel the graph of 22— y2=1, for large valus
of xand g, is given by thedfollowing equations :
, e 1 . 1
({)iyfx-ﬁ; () gy=-wtg, s
and graph the &% tion. .
Show thatythe corresponding approximations for the equation

N\

§—a’=1 aré > 1 1
2O Wy=ztgs () y=-r-g;
and graph the equation. '

\V .
8./ Prove that, for large values of x and w, the approximations tio

&he'equation (y— Zr+y+1)=1 are given by

&«
NS

: 1 . 1
(1) y=a+5-; {ii} y=—x—1—§:;

and graph the equation.
Bketch the graph of (o —y)(2+ #+1)=L

4. Graph the equation (y— 22) (v — 29)=1.

5. Graph the equation (o —y+ 12—y -2)=1.

6.. Show that cach of the asymptotes of the curve
¥y — o)y —20)=1
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mects the curve in three peoints at infinity. Prove that the curve
approaches its asymptotes in the way =pecified by the following
ouabions @ 1

Asymptote, y=0; ¥=gz

Agywptote, y=2; y=d— %

1
Asgymptote, y=32; y=2=+ s A
Draw the curve. : \’
7. Hketeh the graph of the equation % \J
#°%g
.

wy(y—o)(y—2y=1 O
Show that the g-uxis moets the curve in four points a 'i&iﬁ'ﬁity, and
that the curve approaches that axis in the way. speeified by the
equation @ -1 f% .
8, Truce the graph of the equation ) '\\J
' aylatyya* =0
9. Draw the curves given by the follqwingfz equations :
, p Ao 2
R e TN L e
10. Draw the corves given by ;fih'evfollowin g equations ;

(i) g:ﬂﬂ-%\ "‘(ii) y:(x—l)uzxél)—g;

(iiL) 'y+®m'&)““(x—+a)i'
11, Draw the difyes given by the following cquaiions :
. A\ \,'x _i B 1 N - l
(l)xiﬁi.‘?“q‘ﬁ; (11)_ _’i‘j=:.-:2_.w§; (i) y=2*- =

'1’"\.“ X - ; o 1
12.’&'a.ph the eguation g/‘=.ﬂf-+;3-

AN . . )
A3 MDvaw the curves given by the following equations :

OO eyt @ ady-a)=ls ) ayy-9=1
\/ & Trace the curves:
Q) gy —a)pran=1; @) p(y-2f+2)=1;

(i) (- )y +20=1.
15. Prove that any straight line parallel to y+a=0 meets the
urve git45—p3 in one point at infinity, but that y+a=0 {the
Bsymptoto) meets the enrve in three points at infiuiy, and that
the curve appears above the ssymptote ab both ends.
@A, L2
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16. Find the equation of the line that maets {he curve ghpab= gl
In two points at infinity, and state how the oy rve appears al the ends
of the line. Tind sho coordinates of the finfte point in which the
asymptote intersects the curve, '

17. Trace the variation of the shape of the hyperbola given Ly the

equation (% — 2y + T_)(Q_J,._,__y._ 1)=g, &
as & assoroes values from 1 down to zero. ' »< N
What is the graph of the equation N\t
N
. (e~ +1)(2r+y-1)=01 D
18, Factorize Q;’!’J&z"—;ry—- P r+2r -1 then trace ifi, one diagratn
the graphs of the following eguations : 0O

(1) 2 —my— 24zt Zy—2=0; (i) 22 .-?.:.y"’—:};?+;r; +2y=0;
(i) 202 gy~ g2y 2o —T=0n R\ )
I9. Graph in one diagram the equationsx:',\\"
O ey =H@e-+H=1; Gty 3)(2e—ay+ =0
() (ty—3)(2r-By44)=—1. \Y
20. Prove that the equation & ".:’:. _
237+ By ey? — iy~ 3=
represents a hyperbola, taking ah Fpevhola to mean a eurve of the

second degree which hag tWo real and distine{ asymptotes. Draw.
the cutve. "\

"‘\
21. Prove that, the dquation :
\a:-"-f— 2?2wy+32?/2+2g,-?;+2ﬁ/+ e=0

Tepresents eithe? a hyperlola or two real gtruight lines if A%>ob,
the lettorsyoffior than 7 and ¥ denoting ednatants, :

N/

22. I;“:i\id’how the curve given by the cquations

A\ b) e ¢
O YTILT YT
w@pproaches its asgymptotes. 8ketch in one diagram the curve and its

N

7\ gsymptotes,
,n\’ “;

\ } 23, Tind the equations of the asymptotes of the following enrves:
. £ " T 3t
(i) o=, yn(:m; (il) &= T YT

LS &
(iii) = A
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CHAPTER XVIL L\
AN
HARDER CURVES. .\~
122. Tangent at Origin. Let the equation “o(;i,'curve he
writlen in the form _ O

0:-;.¢.l+q)52+u3-l;... +u@b .............. (1)

where w,, 1, %, ... %, are homogeuedy¥ polynomials in o
and y ol the 1%, 284, 374, s ddgrens respectively ; since
there is no constant term the origiw’lics on the curve.

The equation of the tangentift the origin is u,=0. To
see thiy take a definite example,

0 =4 — 2y 4 Ba2 £ Iy —  + 3% — by 4+ 2%, (1)
80 that 2, = 40— 2;2;‘&&%;;51 the line to be congidered is therefore
' SN da— 2y =00 s ()

Solving cguiattibns (1) and (2) as simultaneous equabions,
we get forpmthe equation | '

DT 0=32 1 3B = B0 ). e 3)

IQHHB (2) meets the curve (1) in two coincident points

atthe origin, and is therefore the tangent; any qther line

__¢through the origin meets the curve in only one point there.

™ If equation (1) had no terms of the 274 degree, then the

V' equation corresponding to (3) would have fhree roots equal

t0 0; the line (2) would therefore be an inflexional tangent.

0 gencral, if equation (4) contains u, and ug bub not u,,

the origin will be a point of inflexion, beeause the line

=0 will there mect (he curve in three coincident
ponts, . . oo
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Suppose now that equation (4) contains no terms of the
first degree ; it will then be of the form

0-——?..52-]-%3-{— v e i {4

In this case every line, y=ma, through the origin wil

meet the curve there in two colneident points, becanse

obvionsly, when we put ma for 4 in (&%), a2 will be o faeter

of the right-hand side. The origin is therefore said tOybe: &
double point of the curve, : 7\

To illustrate this type take the example « M

=0 4yt O Y (4)

Here w,=aa?+42 and we have three chdes to consider
according as the factors of “y are (1}Jdeal and different,
{i1) real and cqual, (11) imaginary, \

Case (i), TFactors of %, real and/different: « negative,
say &= —1. The equation (4) heeomes

. 3"2_532'_'::%;"—; 0, .
while a,=(y — 2y 4.20), oIhe line y—w=0 meets the
curve (47 in theee eoincident points at the origin; similarly
the line y42=0 meesbsithe curve (4'y in three coineident
points at the origin, "These two lines thorefore lie closer
to the curve tha-n{iny other lines through the origin; #uwo
branches of the{chrve pass through the origin, und thesc
lines are the tahgents, one for euch branch, ~The curve is
identical wgth Fig, 76, p. 202, if B is taken as origin;
Y—z={ {Si'he tangent at B fo the branch ABC, while
Y+z=04" the tangent at B to the branch . ‘B, The
doub{q ofab is in this ease a node (§83).

ade (i1). Factors of %; real and oqual: ¢=0, The

¥ —

N while =% In this case the origin is a cusp (§83);

\
4

the graph of equation (47) is Fig. 74, D 200.
Case (ifi). Factors of %, imaginary: « positive, say
@=1. The equaiion (4) becomes

YA —ut=0, (3"

while =342, Here the coordinates of the origin
satisfy cquation (4, but there 4s no other point of the



§122] MULTIPLE POINTS. 999

cwrve in the wneighbourhood of the origin. Writing (47)
in the form P=at(z—1),
we see that, except when = and ¥ are both zero, @ must be
equal to or greater than 1 if ¥ is to e real, so that the
point (1, 0) is the nearest point on the curve to the origin.
The orvigin 12 called a conjugate peint or an isolated point.
The graph of equation (4”) resembles Fig. 75, p. 201, gf\
we suppose the oval to shrink to o point af A it consistss
of the isolated point at 4 and an open branch, BBC,
where AB=1, the point 4 being the origin for tht~graph
of equation (4, D

If cquation (A) contains no terms. of thesI and 24
degrees and begins with 4, then every hjevhrough the
origin will meel the curve there in thregedineident points;
the origin is callted a triple peint, &,\t-he factors of w,
furnish the tangents to the thre§\branches that pass
throngh the origin. Ditferent cade®rise according to the
nature of the factors of a, (redl*and different, repeated,
imaginary); in §124, lix, 4, ah example of & curve with &
triple point is given. R )

The following examplés show how the gradicnt may
be obtained in cases 4 “which the rules of §102 are not

directly applicable., C W

Ex. I Tind the\gradient at any point on the graph of the equation

< P = Buay =00 coererrreemeirenieeessnenane{i)

Tet (A, & .‘Je’auy point on the curve, and let the origin be shifted
b0 the poiutdBy putting A+ & for @, and 4y fory; equation (i} beeomes

;%" (At EP+ (9P - 3a(h+EE+m=0 i (ii)

o (R34 — Bahk) 1 B(RP — ak)é+ (R — ah)y
N I T (i)
) The torm (43445~ 3ahk) is zero, sivee (h E) is on the curve;

€nquation {(iii) iz thus of the form of _eguation () with £, # instead of
#: ¥ Hence the tangent at the new origin is

B(AY— ak)é + Bk — ak)y=0, R UTTPTPOTRUOUPTRTRP ¢ . |
and thepeforg the gradient is

B —ak) k=B )
T3 —ak) F-ak

N\
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But (%, £} is any point on the curve; we may thercfore pul z for &,
and y for 4, and thus get the rusult,
.\ ) ey —
gradicut at {x, v):= y_‘* e
In finding gradients it saves labour to write # for 4 and y for b in
equabion (ii} instead of in equation (v). We can thon state the Rulps
Rule,  In the equation of the curve put x +§ for x and y+y for y, then
bick ‘out the terms of ihe first degrae in g and y; if these terms are
2§+ By, where « and 3 will vsualiy contain both x and ¥, the{gradient
at (x, F; is —a/f. ) 4 N
LE Al yy=2%+4% - 3axy, then the derivative of Fla\ w7 when &
is variable and » kept constant is 32°-- Bay ; if, howevel, » is kept
conslant and ¥ is variable, the derivative s 3y 3. 1t will be
scen that If the expression af+ By is formed as divected by the Rule,
we shall have w=33%—3uy and Bw=3" 30w e are thns led to
a convenient wethod of finding the gradient an\will be shown in the
next example. : ’ P\l

Ex. 2. Tet /{7 ) be 2 polynomialighe and %1 denote by 7 the
derivative of F(w, ) when » is varighletind g is kept constant, and
by #, the derivative of fe, #) when” y i3 variablc and » is _kfz{)t
constant ; then the gradient » atwny point {x, ¥) on the graph of the
equation f(z )=0 is given By, t]ne cguation ,

A fr =20 or = _;f_

3 #
We shall prove the pile when (%, %) is the polynomial
& + b 4 cij%‘sf: T g+ g7 4 La® vy + Y35 5 e Q)
and it will Le eakily ¥een to hold for any polynomial.

In (i} put ay- g\for @ and y+9 for ¥ ; then pick out the terms of
Phe fst _degmg~in £ and % and arrange them in the form of4 B
The gradient’sill be — o/, The expression (i) becomes :

FRDo+E) ey )+ dle+ E+ oot E)(y+n)+g Y+

R+ 8+ (ot EF g+ ) 4o+ E)y+ ) ply + )t

&'part of the first degree in & and 7 1a '

(b+ 2+ ey + Bla? + Dmacy + gty
Hetor+ 29y + mot 4 Znay + By
The cocfficient of £ is Jo» the coefficient of 5 is £, and therefore

This rule is of very general application. Thus take
¥ —Lry — 5 — By + 2y — 5=0,
Denote the polynomial by #e ) ; then
Jom= ~29— 92 -3, fr=2—22+2
and Y= =%0-B Syi2a43
' Qy—2242  y- 9513
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If 3 J_ 0+1, then (% + 1}y —(#*—1}=0. Denote this polynomial by
J(# )1 we then have )
f(fs .'J') = ("5'2 +1 )3/ = (‘32 =1 ): fé= 2y — 2, 7‘; =it
c ey (a4 1) — 2 (Wt - 1) dx
and e ¥ _ - "
o YA (1) @+ 1)

.x’/,

We have cxpressed the gradient in torms of # alone by putting
for y its value (2% —T)/(2%+ 1% <,
" Ex. 3. Find the gradient in the following caszes : A ‘s“\/

() it — =0 (ii) 2% +dmy —y*—1=0; 4 ’Qx

(ill) y2=20x+ ba?; Gv) {f¢ﬁ+2k‘c'u,r—‘—b_jz—|—9g$+%ﬂ+c =0;

(3) st ey —ale—gY);  (vD) athmay(oy) i X0

{vii) (.';5'2+'/2)q---4a.9:3u{; (vili) {y—aP=ab. RN 3

Ex. 4. Find 3 and express the result in tem{ssof z alone in the
Tollowing examples : N\

0 (+y=2-1; (i) #Fy=1; (i) m~ 3 (V) P+ y=a;

(V) (L +aMy=22-1; (vi) (14 r)g,@.dx’, fvil) {1+ax)p?=x"

Ex, 5 If y=wfe and if u, v are gqr,l? jnm:m;la in & alone, then

LA 'zm —uy’
2

#
where #’ and # are the %‘v%wos of w and » IC‘&PELLI‘B}.}

Write the equatwn,?ju wv in the form gy —u=0, and denote vy —#
by /@ g); then A0
f{‘»‘! ’3’)="‘?y—ib fz=1’3}“1€ f —
and ":"\M of e f: u —v@/ wu -
\ \h g Ty e )

sincy y=\{'\.f‘é’ and thevefore ' — v’y = (v ~ m})fl

-

lf\grh; 80 that =1, «' =0, then y'= -

”\?We have thus found a rule for r)bta,mmg the dcrlvartlve of a
\Quntlen{; and it containg also the rule for a product wv Write uv as-
the quotient of » by ! ; then

Q‘J -
R PP
a s Tt

Y ¥ =
x

=pu’ 4 ur
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Ex. 6. Tind g in the following cases :

. a1 .. o+ b4 ,
Oy=gors Or=mmre ) r=v@+D);

) r=grapny O y=etdED; (D) P=lrtai(ad),

123. Orders of Small Quantities. In determining e
shape of a curve near a given point on If, we retain fome
terms and reject others as being small in comparigon with
those retained ; we ave thus led to speak of different’orders
of small quantities. "G

When  is small, 2 is small in comparisongwith z, and 28
is small in comparison with #2, because tHe Bitio of « to @
and of a* to af is the small quantity ¢ The quantitios
©* and #° arc ealled small quantitiesdef the second and
third orders respectively, @ itself } eing considered as the
standard small quantity or the sthall quantity of the first
order ; awx? and bz’ where o and\Bure constants, are also of
the 224 and 8 orders vespectively.

The following exampleshshow how these notions of
order are applied; we sappose the equation to be in the
form 0=, +w,+ 4. . of §122.

Ex. 1..' Qi%?x—&i_y—3m2+4.zgr+2y9+.q§. SRR |

The tangent at %0 is 27— 4y=0, and this gives the first approxi-
mation y=3e ; Wear' the origin therefore # it of the 1% order. Sinee
# 15 of the fivgh order, 2y aud g are ouch of the 2o order, so that the
second apprezimation to equation (i) is wytau,=0. 1t is, however,
more conkelicnt, as & rule, to give this approximation explicitly in
terms'g,f.’ s we therefore write

AN\ F=37+3( =82+ 4oy £ 25, ovviirneciie e (i)
a@‘d\n the terms on the right side, in place of y put 4=, the value of

\.}/j"irom the first approximation. Wa thus find

y=3e+3(-3attde. Jo+ 2. LW =Lo— L ..........(iH}

Equation (iti) shows that near the origin the eurve lies below the
tangent,.

Ezx, 2. O=p— o4 By 4+ 2 1 a5+ 3% e (M)

The tangent at (0, 0) is ¥=0. Near the origin y ¢ much smoller
than w ) itis of a higher order of smallness. The equation suggests
¥—2*=0 a3 the next approximation ; this makes ¥ of the second
order, and therefore 2y of the 2% order, 3? of the 4% grder and 3 v

N\
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the €% order, TIence w=s° s the correct approximation, ind near
the origin the curve is approximately a parabola.
Similarly for the equation

O=a — 32+ 37+ 285+ 275 v v (i1}
the approximation is & —#%; when we take y to be of the first order,
ay is of the 3 order, #* of the £"and »* of the gtt, Tt depends on
the given equation whether » or g is to Do taken as the standard
sall quantity or the quantity which we call that of the first order.

. 3. O=gy—-sy+255— 8% i, { DN

In this case the terms of the second degree contain y as a J;'a.c’.t,&‘,
and thorefore vanish when y=0; in Example 2 (i), g isnot »
factor of the terms of the 2 degree. The mnext ap'pruxi.lgﬁa.ﬁfm is
given by »—#*=0; thiz makes y OF the 3 order, xy of t{a&‘“‘ and 3
of the 6. 'S

When %, is a factor of w4, the second approximatien is derived
from w, +-u,=0, and not from #,+u,=0. Take, fo{insts.nce,

O=y -2 2224 2y 45 =B PP e (i)
Here wy=(y — 2}y + 2y =2 (y + 2%). Writé’a‘[u&bion (i) in the form

e A= ,__'?.3 +f/5 _.ZIB Y] ﬂ(i'a.ﬁ‘."‘;’s)(@ﬂx}_

T T kg2 TN Tyt

Since the first approximation is yeyr, the Tumerator. of the fraction
last written is of the 4 erder, wiiil®tbe denominator 18 nearly onity ;
t};e fraction is thus of the 46 dyger, and the second approximation 13
therefors A

oA x:.ﬁ'}g-{—ys:g&s.

The origin is & point ogf.ﬁﬂ exion.

Ex. 4. \\ 2%+ — Seey =0 _

Near the origih, Jon the branch to which y=0 is the tangent,
¥ mist be much gmaller than z; we therefore try a°—3ary=0 or
Sayr=22 as thp wpproximation, This makes y of the 2 ord%l" and
therofore theyrejected term »° of the 6% order, so that Bay=x" glves
th(_s‘ Icot_iﬁ)js"t\a‘.fjpr'oxitnatiol . . ;

fblm‘l{Q ¥ Bor=2% 15 the a,ppt‘oximatn'on when &=0 18 the tangent ;
thiggken the rejected term .4 of the 6% order when g is of the first.

e Ay |
\ } “The approximation, when y=0 is the tangent, s 4y=—aft RIS
makes the rejected term »* of the 8% order. T

Corresponding to the repeated tangent =0, the approximation 18
glven Ly 40— da?ye0 or 2u=+ y%. When y s of the first order,
& 5 of the Fractional order §, and the rejected term o* of the 6% order.

Bx. 6. Show that 22+ 48 =0 iy a first approximation to the equation
of Exa-mple 1 when o anel ¥ are lardge. 4 P
The equation 2+ =0 gives y= £ (- 1457 3 We may call ¥ a large
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auantity of ovder § when z is the standard farge quaniity. The
ternay is of order §, 22 of ordor 2,y of order 4, 2 of ordor 1; thug

the two terms 32 and 2 are of the 2 order, and the rest of lower
order.  Obviously # must be negative i y 1s rea),

124. Cwve Tracing. Wo shall now give some harder
examples of curve tracing ; the following general divectiofs,
should be noted. ' :

The usmal procedure is to sclect some points gOgithe
curves, Lo obtain approximations to the aquationgfor fuch
seleeted point and draw the corresponding elemantd of the
curve, and then 1o join up the elements thu& Teund. In
joining up the clements any symmetry, a{iiafl or central,
will be very helpful; symmetry will alsod&sen the labour
of caleulaiing approsiwations. it S sometimes  be
possible to find valies of one vapindle that nuke the
other imaginary, and thus to det€ritine regions throngh
which the curve does not pass e student shouwld look
ewrefully for such vegions. O

Important points to be exmained are: the origin and the
points where the curve €kokses the axes, the points at
Infinily und points W.h:fjsi: coordinates can be seen by
mspeetion of the equation.  If turning points can he found,
these are very uscfuly but there ig generally cousiderable
difﬁcu]t-y In locathiy them exaet’-]y.t Cceasional ly 16 will
be necessary téBolve equations, and the methods of Chapter
XV will be mgetul.  The determination of the gradient by
the methogsef $122 will also be helpful in some cases,

It shotld he rementhered, however, that all we profess
to givi\ire the leading features of the eurve; sccurate
de%ﬁhihaﬁon of its details is beyond our plan,

sﬁx 1. bt Py )= (),

wO%The curve is symrmetrical about both axes (Fig. 106); the origin isa
() hode and the tangents there are y=zand y= _p, ' :

Near y=2, we have.

PR v R 2
= - = = E
ai(y +x) ey TR
AT W — e T
Near y= — 5, we have y— —r—

The poinis (0, “), {0, —r) are on the cuprve, Ehift the origin o
{0, a), and the equation beeonles

Q= 2ty 4. —f-éazye—l—fimﬁ 4§ +if,
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and the shape near H}c new origin is given Ly 2ay +&=0. Near
(0, —a) we have 2o =24

By eolving the equation for » we see that the greatest value of 2 iy
given by the equution a?=§(Jy% ~1}e? in which case pf=1a% At the
points given Dy these values of & and y the tangent iz perpendicular
to the raxis.  Sinee 22 is not greatev than ${/2 —1)e? the values
of y mush algo e finike, and the curve is a closed curve. The curve is
shown in Fig. 108, where « is represented by 10 divisions ou cach axis.

T T TN
Oy : RN e\
HH o 2N\
R T I >
] RVZl T
i | ‘I I ; ; 7 1
Chil b T - 1
o ! T
X Y
i 1] I}
HEEL T ! N
Y N
L1 %) Fi . - b ;;
w ‘f/ 7] - f}'
T 7 I~
A £
AT S i3 :
4L/ A '\ HE- Fil ]
IEEn S / mm
T ! Y- o [T
L] 1 R ! Ny Y
H LAY - L1 il e :
! e > NN i M i
Tl -, ERELC) Ui
- - 14 11 T \l—
e T i S
T, 106:\ - Fie. 107.
Ex 2 N — Y =25 or y=at et

The origin @\i*eusp (Fig. 107), but here hoth branches le on the
stmie side of Ghvtangent y=0 near the point of contact, a,nfl‘ the cusp
Iy called arvwhep of the woond Eind {or a rhamphoid cuap). __lhe lower -
branch “ewsses the x-axis at (1, 0) and lws a turning ‘Pumf’_Whew
#=084. 5 The curve iz easily traced by plotting points (¥ig. 107).

p \EX'& _353_]_3,3__. 3&5530. .............................. {1)

\3 :Th ¢ origin is a node (Fig. 105, p. 293}, and {,he shape there is given
V3123, Example 4) by

%

Bray=x* and Bar=y>

By § 122, Fxample 1, the gradient at any point (@ ) I8
{ay~ Vi(y? ~ ax), and is zere when ey=a® 1f we solve cquation (1}
and the equation ay=22 us simultaneous equations, we shall find L;he
furning points; disregarding the zolution =0, ¥ =0, we tind 5=0a if2,
¥=a¥4"as the coordinates of a turning point. The gradient 18
infinite when PF=uar, and by solving this equation and equation 0
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23 simultaneous equations we sce that the tangent at the Doing

a4, a 2y is perpandicular to the z-axis,

8ince equation (1) is not altered by interchanging » ang %, the eurve
Is symnietrical aboat the bhisector y~u of the angle XYOT ;) from ghis
symmetry the cuordinates of the Poiut of eontact of the tangent
perpendicular to the s.ayxis might be deduced from those of the
turning point. p
The relation of the curve to the asymptote Fy+a=0 iz disibed
in §121, Example 2, for the value 1 of @, A
f we seek the Points in which the line FHa=2X parallél bo the
asymptote, meets the curve, we get the eguation for T NN T
3(A+a)2? - BA(Ata)w+ A=, st i)
Sines this equation is of the gue degres, one root s f’nﬁnite, as it
should be; the discriminant of the equation (ii{ﬁo‘r the other two
points of intersection is
D=9)L2()L'+a)2-—12)\3@-1-(:}:3)\,2()1 P (3a— A).
Tor veal roots therefore we must have \;lj)L:—r;, and the curve
lies between the YMptote zty= .4 %ﬁd ihe line 2+ =23a, which
. 3 Ba a
touches the loop at (5-, _2.). \J

The curvo is shown in Fig. 105, ~p: Eé:%, for the value 1 of o,
* T equation (i) put ¥=15 20d8ve for =5 we thus find the Freedum

$quations of the clirve, >
) x‘.-s'._aﬁ%, y:gﬁ,(m)
R BT 144
and from these equations the coordinates of points may be easily
calenlatod. Tt wil] bé % good exercige for the student to show thaf,
if 2 is the point gven by equations (i), the eurve is traced in the
followmg order{ ASF increases from —w g =1, £ moves from £
along the brana} OF to infinity ; as ¢ incroases from -1 to G
£ resarng T;Q~D~fr0m infinity along the branch D0; and finally, as ¢
moreasesdiom 0 to + oo, p describes the loop 04 BC
Note thiag“the line y=zz ieets the curve in g points at O and
once alyapbint, P different from 0 the coordinates of F arc therefore
rationalMunctions of L When the fraedon, equations can be ohtained,
&rh,\venab]e Us to ealeulate enni Iy the coordinases of points, and thus to
LIS

the curve with, greater accuracy, . .
Y@t —dafy=0. (i)
The origin is g triple point (Fiy. 108), angd the approximatbions there
are, by Example 5 of ip23 (g 108) pproxt
dy=—z2 (i) and 2p= SR (i)
(sez.]%i_i;)éﬂ Ol‘dinury ot keratoid CusDy or a cusp of the Arst kind
The graph of (i) is a paraboly with iis vertex upwaids ; the graph
of (it} in a semicubical parabely (§ 83) with the ¥-axis as the tapgent

7
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at the origin, which is a cusp. The triple point is thus made vp of
an ordinary point and a cusp. ’

There are two asymptotes, and their relation to the eurve is given
by the equations

y=x+l - and y=-=z+1 +6I—?;-

2x
To find where an asymptote crosses o curve ab a finite distanee from
the origin, we solve the cquations of asymptote and cutve as sinul-
tancols equations. The asymptote y=#+1 crosses at the points A
(-0:3, 0'7) and {17, —07), while the asymptote y= —#+1 crosses( N

at (03, 0°TY and (17, —0°7) ; these numbera are approximate. N\
N
PR TR OHFFFEEE - o
WREEN N o | T I! A 1 L8
= S I P
{ b Wi [ ] v NN
5 A :
- ~; | b7 Sathant ot
- ¥ i
. I muE
H SH R f e N
Fo= T P ]
:",ﬁzl!____
B
I - Pl
[ i -
- ol Y H
| o T | N

\‘A
The freedom\. eQuations of the curve are

2 4f 48
:“’. .ﬂ?=m, _y:gx_.z—&-__—l
Tt isEirly olyious now how the curve goes (Fig. 108).
BT N R R e A verrerssnanenn(i)

..\: e suppose @ == 0 ; we may note at once that # eannot be negative,
And that the y-axis is an axis of symmetry (Fig. 109).
Tho erigin s a triple point, and the approximations there are
day=a® and = dai’.
Solving the equation for 4% we get R
: ' xt="2ay _.yﬂigy,\f(az-—ay). ........................ (ii}

Equation (ii} shows thai y cannot be greater than o therefore &
Also is finite, a)nd the curve 9;10.33 not go off to infinity, as is otherwise
obvious, since (424322 cannot vanish for real values of 2 and 7.
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From {il} we see thal two values of 2 are equal when y=n; the
two poinbs (2, @), (—o, «) are thereforc turning points,
The freedom equations of the curve are
L A oo s daf?
"'—(1_1_{3)-;.’ Y= TR

N\
) I L I I O
T na i aunh [ A o
! : = 2 )
| i | — ] Lot L I'\
/—— ML N
[ .\
4 i s -
N 7 d
I / —
N ‘; A
o il
P P -ﬂ’-’ | ]
- -5k {} ! I‘? X__
dnnnl A
T A 2 i d T
L

Fia. 104 )

It may be shown that the gra(}igﬁt'gx’ i given hy the equation

the second fraction beiugf{;‘mﬁuined frony the first hy using equation
(i) To fnd the poines whore the tangeut is porpendicutar to the

a-uxis, solve equatim({i) and z2(s?— 238 =0 ; we get

Vi
x?\—‘l —a, y=3a {and also z=0, y=0).
The curve isghown in Fig. 109,
Ex. 6 A\ } / O=22 —dy 2244 2420 0R {i)
:I:hi:sf\xampl_e‘is nuch harder than the previous ones.
Phw'eurve {Fig. 110} goes through the origin and erosses the axes

LGt the poiuta (1,0}, (2,00, (0, 2). 'The shape near these points
W mIven as follows ; )

Near (0, 0) ; y=ho— Lo, .

Near (1, 03 It= &,

Near (2, 0y ; = -3f—2fs

Near (0, 2); U RN )

Now solve cquation (i)for z in terms of 41 we ol
(Zy+2z—208=(9r 23— B{r" — Bt 1 2x)

=-2(5—1)(at— 424 92)
= =2 —06)(r—1)(x - 34), ..con.
where we have faken »'%2=1"1 in finding the faclors of 2% - 4¢

cereeniD)

~ 2




$124] WO QUBIC CURVES. 309

From equation (i) we see that ¥ s imaginary (a) if =234, (f) if
1206, and s veal for all other values of . When #=34,
w=— 24 tavice ; when #=1, y=0 twice ; when #=048, y=01 twice;
the tangents at (34, —2'4), (L, 0) and (06, O-4) are perpendicular to
the #-axiz.

TR = = a
Pt [ =Sk (\A

\\ © Fras L

The shupe neag ¥, 0) has already heen determined § it is easy to see
how the curde'ping near (06, 0°'4) and (3'4, —24), since the curve
existg nnlyaQ"dne side of the tangent at the point, that

Far laxgg ¥aluos of & and y we Lave seen in Bxample 6, § 123,

the eiide Approximates to the graph of 2y*= — i )
1‘hﬁ§‘xch]}1 iherefore consists of .an oval and of & hranch extending
taditmity on hoth sides of the s-axis. (Fig. 110)

O Fx 7. 0=y — 2y BT FY sz dD
\/ _The curve (Tig. 111) goes through the origin and meets the axes

also a (1, Dand (0, —1). The approximations are : . .
Next 0,0), y=a?; near (1, 0), = - 15— §1€% near (O —1) 7=~

. The asymptote is -y =%, and the relation of enrve to asymplote
1s given by ’ 1
y=—x+§+ py

The asympiote erosses the enrve ab the poiut (§f 4y) or (06, 0°05).
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To get further information, ind where the curve hisets the Jine
#+y=A parallel to the asymptote ; the wbscissae of the points of
intersection are given by

(BA— 2y — (BAT4 N4+ Vet AA+1y=0. ... (ii)

Equation (i) has two finite roots unless A=2/3 as it should have,

The diseriminant £ of equation {ii) is

. N\
D=(BA A+ 12~ 40 A+ 1)2(3A — 2) _ '
= - 3AT-10AF1TAZ4 10A 51 OO0
O TS T 1] Tk T T T L T |
' N Bt TR O
FEEEEN N I : TR P
;_._ .-+-: T i N L_I_i_:
mand wl ' "
H HH —+H
] T . T
H e
g_ ___‘\ i ]
i NI
| 1y

ENF N |
51% =k IR
+ TR
T T i _I_
AS FEHematoumaal naes a

|
Frg, 111

£ is obxdbutsly negative for large values of A whether A is positive
or negative” It will he fonund by trial that 3 is negative (i) if A is
greater{than 14, (ii) if A Hes hetwoen — (-2 and —03, (i) if A s
negative and pumerteally greater than 4.1 ; these values ure approxi-

1uatd, but are sufficient to show how the curve goos. .
o\ & ecurve consists of a branch extending ta infinity and 1}’}Ug
between the lines #+y=14 and edy=—0% and of an oval lying

N\ between the lines Fhy=—05 and p+y=—4-1,

3 By giving to A a series of values we can get a numbor of points,

and thus have a fair jdey of the general course of the curve. We
give the table :

<

D R v - —
A1 o ‘ -1 l —a ‘ -3 | -4 | -0

e | 7% | L
xfl, 4|| U - 05 il 0,-0% [—0-22, ~116{- 009, 158 |15, 171 |’ -0°08, 031
AT —

The curve is sketched in Tf‘ig]l.
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EXFRCISES XXXIL
Trace the curves given by equations 1-30:
1 a2 —y¥)=2%, the Lemniscatc of Gerono.

2, a*(at -yt =(+3+5%% the Lemniscate of Bernoulli

8, whi 2 Bty =(2+2%% the Lemuiscate of Booth.

4 & +yH=1t A
5. a(y®—a?y=a(x?+y?), the Logoeyelic Curve. \ ~
B, aly?— )=y (et o0 7. ol +at=p(z? ‘-’*)'2);% \/

8, afy?—3x%=x(2?+3?), the Trisectrix of Mac]au.ri’n.f: )

9, a{f+ =23yt - 2" 10, f{a-—2)y* -——f,éhé(}issoid.

1L et tht=a(fLy?), a>0, >0

12, aa? -t =m(at 4+ 9%, a >0, b0 :.\\,}

18, ayi={z—y}+y°) R

14 et d)=e(z—d){z—b), b>a 30N

15, y¥o—m)=ba{v+e), >0, bF0,E>0.

NI s gy =alat s
18 (y-2ep=uityt W\ 19 aly-—af=2p

0. et =@FryDn, 2L ayp(etp=2i+IP+yt

18. ofy? - blni= %l

22, Pry=xt -yt x~.> 23. whay={a®+y)

U w(gi-aLh 25, 74yt -2+ Bay+ 40 +y=0.
26, a(z24 yohes (024 3% — ) the Cardioid.

2. By, 2. Pyt 10025960,

. (yrery=aay. 80, 4+t —5y?— At +6=0.
%}féve that the curve
A O By?=(2w - 1)(442 - 1)

Shas 2 double point and two real points of inflexion, and that these

:“\; three points are the vertices of an equilateral triangle.

3

32, Trace the curve
(rty+ D@a+y+1)+2Y=0,
and show that the eurve K
(w4t y+ {az+by+o)+a%y =0
will have a double peint if b=e.
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CHAPTER XVIIL \>\
'CANONICAL EQUATIONS OF THE CONIGLSECTIONS,

{ &

125. The Parabola and its Canonicaif‘ﬁ‘quation. Let a
variable point P move so that its didthhee from a fixed
point 8 is cqual to its perpendiculaghdistance PH from &
fixed line ZX'; then the locus of X iv'a parabola of focus 8
and directriz ZX. The formef the curve is shown in
Fig. 112, A, the middle point>of the perpendicular SX

o

z \y .\}s“ ) T
M - — - l:,/
R \:
'..,‘..x/ X[ A 5 N x
G N
N
\\5 P
A -
N\ >

Fra, 112,

from 8 to ZX, is the vertex of the ecurve and the line AS 18
the axis. Tt is clear, from the definition, that the curve 1
symmefrical about its axis,

Let the curve be referred to A8 and the perpendicalar
‘through 4 to A4S us axes of 2 and ¥ vespectively ; lel A4,
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NP Dbe the absclwsa and ordinate of any point Pz, y)
on the enrve ; then we have, ag the equation of the curve,:

_ NPE=aAS AN ..., ()
or FE=4AX, i (2)
whore AS =, : ' :
Proof. ' . o
: i 2 AN
Npi=S8r2- SN2 . A\
5_ = PM2— SN?, since SP=PM,
’ = ¥ A% SN ' ) " :
! w (AS+ANP—(AN— ASY, siueenS 4 = A5,
=4 AN AN N "\ NSRS 1
4 . A (9
or Prmder. P P R {2)

Sinee the curve is symmetricabdhout its axis, the y-axis
is the tangent at the vertex; henee'y?=4aw is the squation
of & parabola referred to itg.J%is and the tangent at the
verteX as axes of » a-ml..g};’;afnd is called the camowical
equation of the parabolaty

Let LST be the dowble ordinate through the focus; then

‘i“@:‘xszg_ﬂ{g:?w;
thercfore SONLL =4a.

LL or 4a,is Fhe lntus rectwm of the parabola. .
Freedoni $qtiations of the parabola 2= daw are X=at’,

¥=2ab. /5

Ea Nl Find the equation of the parabola whose founs 18 the origin
a hose directrix is y—w=2. Find also the equation of 1ts axIs,
.flt'%latus rectimn and the coordinates of its vertex.
I \ {0} Let P{x, ) be any point on the par abola.
. V" Then the defining condition gives
square of distance from £ to origin 2
=sguare of distance from P t.-o -y +2=0

2=y +2F .
or 22 +;;,),2={:L%+—--): H
wherica 22432+ 2ay — 44y —4=0

j I3 the equation of the parabola.
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(i) The axis is the perpendicular from the foeus (0, 0) tor—gy+2=0
or &+y=0.
(i) The latus rectum =twice distance of focus from direetrix
=2(2/2)=2,/2.
{iv) With the usual notation, 4, the vertex, is the middle point
of S.X, : X N\
Now X is the intorsection of the axis and the directrix, thas 1yof
' #+y=0 and x—y4+2=0, )
Hence Xis (—1, 1}; thercfore 4 is (—1/2, 1/2). '\\
Ex. 2. AQ, AR are chords of a parabola drawn at(]‘iéht angles to
each other from the vertex 4. The rectangle A4 QI domplated on
4@, AR, Prove that the locus of 7 is another patabala,
Let the given parabola he ¥=daz. \J
Let ¢, £ le the points (a4 2at;) and {(at?, B2y ).

Then the gradients of 4@, AR a.re.-git}g : z
atf

el 202

D T A

Bub 49, AR are at right angles ; Plerefore fif,= — 4. .............{0)
\J ] 2

The coordinates of the middle psint of GA ave a(!‘%)a oty tg)

Hence the coordinates (4, EXGE P are such that

b= a(tf:'-i—éf)’ and  £=2a(t,+1,),

or AEZGH LY —2abty o ()

and ANV ESB ) (i)
Using (i) a-mi{l.@'t:‘r substitute in (ii), we get
| O I&=£+8w or k=da(h—8a)
‘Vriti{lg:“" for % and y for £ to denote 2 varying peint P, we havs
I ¥=da(xr—8a)
5 b

a }m’equatiqn of tho locus of £ and this represenis a parabola
WU vertex iz the poing (8¢, D), whose lutus rectum is 4a snd whose

\Bereavity is in the direction of the z-axis.

Ex. 3. Prove that the chord @+by=4a subtends a right angle
at the vertex of tho parabola y2 =44z,

1f wo put s+ by for 4e in the equation y®=daz, we get
#=2(z4by) or 2t by — 4%=0, :
a hmnngganeous eguation of the second degree which represents the
two straight Jinag Jjoining the origin, or vertox, to the intersections
of the chord and the eurve. Sines the sum of the coefficients of

z* and g% i3 zero, these lines are perpendicular, by §42; so that the
chord subtonds a right angle at the vertex, -
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This artifice of making one equation homogeneous by means of
ancther s of some importance; it eumables us at once to get an
equation giving the lines joining the origin to the interscetions of the
curves speeified by the equations.

EXERCISES XXXITI,

1. Draw the paraboela whose focus is the origin and whose directrix
is 3x—4y=6. Find its equation, the equation of its axis, its labus

rectum aud the eoordinates of its vertex. = ¢\

9. Draw the parabolas whose foel and directrices are as folluﬁ(%s\,
find their equations, the equations of their axes, their latera Recta,
and the coordinates of their vertices : !

(1) focus: (3, 4); directrix : y=a. '\\
(“) ” (2: 1) " - 4$—3;9—6‘—‘:Q-
(lil) " (1: 1); » 3&?-{-4_1[—8:0.
(i"') 2 (]1 - 1) ; -n 4‘1"[5"'.';2\"6:0'
™) 5 (0,0 » (B2 -13=0.

~ 3. Bhow that y=ux 2% may be detined ~§&oﬁ1etrically aa the loc‘us
of u point which moves so that its distangeMrom (1/2, 0) is equal to its
distauce. from z-:1j2. Give a geomdbnical definition of z=y-y*
Sketch botl curvves, N
4. Tind the foeus and dil’ect}ii’f}f gach of the parabolas
y=a% yoe ol w=pt w= -

5. Refer the curve wh{se equation is y=2a"—4e+] to parallel
axes of ¢ and « thropgh, the point #=2, y=—3 and prove that it
represents a pa,rabola..c\Fi.nd its latus rectum; and also the foeus.
and directrix reforrdd to the o and » axes.

B. Prove tha{y=1? y=(x -1, y=»"—20+% y=at+3x+3 and
y=u*4pr+ g dréydongruent parabolas.

7. PFQ\I{Z‘E}«’LL 2 = 4w and 1 =da(z+a) are congruent parabolas.

8, Prove that y= 242, y=22"+ w43, y =2+ pr+g are congruent
parah@z \ - .

) .\’g..".]:’;_'o\re that y==aw‘3+bx-[—c I‘epI‘SSBntS the pa.ra.b()]a. whose
revtex is ( _b B ‘1“"3), whose latus rectum is the absolute value

\ / 2;&, - At ) ity i
of 1o, whose axis is parallel to the y-axis, and whose concavity 1s

upwards or downwards accovding as ¢ 13 positive or negative.
10. Find the equation of the parabola whose azis is parallel ltO
the y-axis and which Ppasses throu glE the points (1, —8) (% — )3 -1

1. I ws®+bade and de®+en+-f have equal values when #=2,
‘rf:"’za and #=w,, prove that they f]-la,\’e equal values for all values
1)
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12, Tarabolus with theie axes parallel to the yaxiz are drawn
through the following scts of three points; {ind whother their
concavities are turned upwards or downwards : )

(0, 1), (~ L, 6) (% 3); (ii) (0, 1), (-2, ~5), (3, ~B);
(111) (_]9 9—');(_2; _2)7 (ls _8) ; (1‘?) (15 O); (-1, "'!J: (2) 7).

13. Find tho distance between the foel of euch of the followin%
pairs of parabolas : :

() pf=dar and pPP=4bla+D); A
(ii) y¥=dul(r+d) and ¥2=defr-d) . "\3\

14, P iz the centre of a vuriable cirele which t-mlcheé\ﬁm -axis
and the fixed circle, centee (0, ), rading o prove, ti};d.t- the locus
of £ is a parabola. Find its latus rectum, the coordifates of its forus
and the equation of i3 directrix, . '\g >

15. A variable eivcle passes tlorough a GxedNpOiNt 4 und touches a
tixed straight line £ and A £ is thoe diamctedoRthe civele throngh 4.
FProve that the locus of 7 is a parabola ; andiind ita focus, vertex and
directrix. . : A

18. A variable point P moves sg ,t'-}'i}b the length of the tangent
from £ {o the circle %+ 58 =2ay syl to the ordinate of J7; prove
that the locus of £ 1s a parabola, ¢ ™

17. The vertex 4 of a variable triangle ABC is the fixed point
(0, p}; the variable vertices B3 move on the x-axis so that 084+ 007
iz constant, where the mjgi'l;n 1} is the foot of the perpendientar from
4 to BCU Prove that théMoeus of the circum-centro of the triangle
i 2 parabola, <

18, A Vﬁil'i&blﬂ,%ﬁ'h‘e emis u fixed circle at right angles and touches
o fixed straightfine” Prove that tha Tocus of its centre is a parabola.

19. A chond %) of the parabola whose vertex is 4 moets the axis

in 0. If BNQ arve the ordinates of £ and @, prove that

O\ AN AF=407.
20'~t$""° chovds P and Q¢ of a parabola intersect at a point on
t]le;"&l‘ﬂs; prove that ithe roctangie contained by the ordinates of
Pand P s equal to the rectangle contained by the ordinates of §

Jand ¢, .

&

2l. 1i Ppbea focal chord of u paraboly, of vertex 4 and focus 8,
and if AP, 4p moet the lautus rectum in &, g, prove that 8¢, Sg are
oqual to ihe ordinaies of p, P,

22.' NP s the ordinate of any point P on a parabola of vertex 4.
LY is drawn perpendicular to AP to meet the axis in M; MY
perpendicular Lo the axis mests the parabola in @, DProve that

GHEI—PX'=16482 _

23. A parabola is deseribed throngh four consecutive angnlir
pointe of a regulsr hexagon. Show thai the radius of the eircie
msceribed in the hexugon is equal to the latus rectun: of the paralola.
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24, If from the vertox of the purabola »2=daw a pair of chords be
drawn at right avgles to each other, find the cgnation of the locis of
the widdle point of the chord joining the further extremities. Show
that the locus i a paraboln, and find its Intus reclum and the
coordinates of its vertex and focus,

2b. Prove that the locus of the middie points of a series of chords of
u parabola drawn through ity vertex is a parabola.

26. Given the axis of a parabola and two points on the cuivep
determine the foous and divectrix. 8

27. A variable chord of a parabola subtends a right a.ngle a.t. The

vertex. Prove that it pusses through a fixed point. O \Y

28. Find the coordinates of the middle peint of the ehmd of the
parabola y*=4av whose equation is y=w-+¢, and r]oducc\t,he equation
of the loeus of tha middle point as ¢ varies, }

29, Prove that y-—=2a/m is the loeus of the mllidJK_npmts of the chords
of the parahols y2>=4ax which have a gradient m

30. Prove that y=mx+c iz a tangent to- i*he parabola y2=4dax if
e=g/m.’ P\

126. The Ellipse. ILet a vsmmbie pomt. P move so that
its distance SP from a ﬂ}\ed pmnt, 8 bears a constant ratio

’.
.

Fa v Z

Fre. 113,

¢, less than unity, to its distance PM from a fixed line ZX;
then the locus of P is an ellipse of eccentricity ¢, focus 8
and directrig ZX. ‘The form of the eurve is shown in .
Fig. 113,
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Let A and 4’ divide SX, the perpendicular from S to.
ZX, internally and externally, so that
- SA=e¢. AX and Sd'=e . d’X;
let € be the middle point of 44°; and let B'CB, I'SL, per-
pendicular to 4.A4’, meet the curve in &, Band I, L. "B
the definition of the ellipse, SB=¢.CX and SL=c:30
Then A
4.4’ is called the major azis and BB’ the m'e}'n..qr\ra?ﬁés;
U is called the cenlre and LI the latus rochuih of the
&

ellipse, ”
-Let AA’=2% and BB =2p
THEOREMS. \ v
O8=e¢.CA =eq \\” ...................... 1)
OA=e.0X ,(ri{,x%’X =qfe] i .{2)
OS.CX =CA%=0; ..o, (3)
=@ ) o ®
SLEDa oo, (5)

Proof. (1) SA4&e AX and SA'—¢. A'X,
therefore, by subtraction, -
SA' A= (4K — AX), that is, 205 =2e. C4,
whence x~ (U8=e.CA =ecq.
(2) Ao, by addition,
NS4 4+ SA = (A’ X+ AX), that is, 204 =2¢. OX

1{’&1 nee Ud=e.0X or 0X =a/e.
LNt (3 C8.eUX =eCA.CA, by (1) and (2);
“\* hence CS. 0X=0d=uz
N\ (4) B=0B =8 08=(c. CX)— OS2
' =a’—a??, by (1) and (2),
=a?(1—¢?).

(5) SL=¢.8X = e(CX ~CR) =e(§_ae) = a(l —e?)=1¥a.
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The student will have noticed that we have not used
“steps” in the proofs, In this respeet we are following
the customary practice of Geometrical Conics, and we shall
continue to do so in similar cases.

EXERCISES XXXIV.

1. If ()3=5 and CA=6, caleulate ¢ and the distances of S and, O
from the directrix. AN

2. Tf €4 =6 and CX=7, ealeulate ¢ and the distances of Sand A
from the directrix. A by
. A

3, If =5 and b=3, caleulute e and S.X. N
If d4=6 and e=1/2, calenlate €8, 8.X and S:‘L"\'\ 4

If ¢%=4 and CX =8, ealeulate €4, €F anda\/

If =05 and e=4/5, caleulate &, O, O, :'1\4’3

If b=4 and =35, calanlate o, ¢S, S o,’»S,\'.

If =5 and b=3, calealste the lengﬂé of the latus rectum.

go M Moo e

9, If the focus of an cllipse, whose Becentvicity is 1/2, is 3 ins.
from the divectrix, caleulate the lepgths of the major and minor axes.
10. Prove that SB=C4d and thab, O824+ CH%= 042
11, If 48/ A'S=29/30, as unthe case of the Farth's path round the
Sun, caleulate e )
12, If O8=08, ca]cq']a’\fe_ 2
13. Prove that ,g: WS (B
In the followiyg Bxercises the ellipsc is referred to €4 and €5 as
axes of x and gf; YON, FP ave the abscissa and ordinate of a point
Lz, y) on thelcurve.
14, If g8, b3, SP=4, prove that e=4/5, NX=5 CN=3/4,
NP= 4 j&’f.l /4 and 2¥a 42 =1. ~
15:00F a=5, b=3, 8§P=3, prove that x=5/2, y= +34/3/2 and
,,__.:z.ll.tqsa + y”,.-’ Uz =1.
1B, TF (i, %) ave the coordinates of I, prove that fu? +5%b%=1.
1T, K (x, y) is a point where y=2 moets the ellipse, prove that
r= 4 ab}.‘\hﬁ:{;ﬁ =y and ‘132:.'[(;24-‘?/2'.-"59:] . )
18. Pis any point on an ellipse, & its projection on the directrix.
If the bisector of the angle S£H meet SI in ¢, find the locus of §
19, If the focus of an ellipse be the common focus of two parabolas
whose vertices are at the ends of the major axis, these parabolas will
intersest in poinks whose distance from each other Iz equal to twies
the minor axis,

G453 M
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127. Canomical Equation of the Ellipse, 1f the ellipse,
whose scmi-major and semi-minor axes are (d=g and
UB=b, is referred to €A and CB as axcs of = and v, its °
equation, then called the cononical equation, is

2 y2_ y

;”i‘?:bé—l‘ N
- Let Pz, y) be any point on the curve (Fig. 118Dy let
CN=z, NP=y. e\

‘Then  §?=NP?=SP*— NS =¢, PM>— N\~
=¢% NX2— N§* ,\{y ’
=2(CX — ON Y — (08 — CHRO

=% s} —(ae—my, (1) and (2) of §12
=(a—ex) — (ae—am)) '
=a*+ %t — a2? 72&’;‘*"’

(@ —at) (1

)
- (czz—iuﬂ).::i’_g, by (4) of $126,

. {«‘\'\y‘z az —_ ‘,1:2 m?

Thercfore \'\\,x i — 1— o
WO a? | y?

T\ ETpE=l |

}_}T.Qﬁg,\w(l) The equation may be puﬁ in the form
,§“' e _ E NP B (1R
> Pt T TN oA
W\;"\, “or, as it is vsually written,
A\ NP2 ORe

AN NA~04ar

(2) The curve is symmetrical about hoth ages. For the
image of P, %) in A4’ is (@, ~9), which les on the
curve; and the image of P in B is (—z, 4, which also
lies on the curve.
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(3) Livery straight Jine drawn through € and terminated
by the curve is Dbisected at C. This follows from (2).
. Such a line is called a dicmeter,

(4) For any point @z, ¥,) inside the curve,

X

a2 a4 3 < 1 _

For if Cf} meet the curve in Pz, y), o, <@ and y, <7y
(numerically), so that 23wy, %02 < a¥u? 9507, ahdy
therefore < 1. ' O

(5) For any point R{z,, y,) outside the curve, o J «

' alfa > 1. K7,
- ; R .

If CR meet the curve in Ple, %), x2>{c‘}\and Yo > U
(numerieally), so that a,2/a?+y,%0% > @e?+4%1%, and
therefore > 1. \\

Ex. 1. Find the equation of the ellipsg'%h})ée foeus ia the erigin,
diveetrix £+ ¥ +2=0, and eccentrieity 1 ANFind also the coordinates

of its centre. «
Let § be the focus, P¥ the perpeadicular from a peint Pls, )

on to the directrix ; then S 2 P2
or PEEREAN | (fi"?;' 2 ) ’,
A Iy

which reduces b0 Te?3Ng®— Zoy —do— 4y - 4=0.

Lot X be the fogplofthe perpendicular from 8 to the divectrix ;
then Y is the dntéxsection of x—y=0 and a+y+2=0, that is,
(-1, -1). But §HAXY=1/2and 84/4'X = - 1/2, where 4 und 4’ are
the vertices, @¥efice (§10) 4 and A are the points (—1/3, —1/3)
and (1, 1), Pub’C, the cenire, bisects 4.4’ ; therefore €' is the point
(1/3, 1/3). /0 . .

Exﬁi\}‘erpendicu]ars through 7% to P4 and P4’ meet the major
axisdiNA and ' ; prove that MH is equal to the latus rectim.

et P be the point (#, 7). Then gradient of F4 is 5,/ (2, —a); so0
Abat pradient of P is (@ —2,)/y, and the equation of PIf is

@ — @
?;~3h=—,;1—1 (7 201},

When y=0, w=C¥ ; therefore (M =ux +$yluﬂ‘
-
Sinilarly OM =z + z':t:c_t
. K . .
Therefore MM = CH — =2, L — %, since & Ye! 4y, =1.
AP w !
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EXERCISES XXXV.

’ .
1: Find the..éccen_trici ty of the ellipse ;5 +fﬁ= 1.
2. Find the eccentricity und the latus recturm of the ollipse
W95+ y49=1. 2\
3 Tind the canonical equation of the ellipse whose mingk adis
is 6 and latus rectum 2. A\
4. Find the distance from the focus to the directrix of LQ@ allipse
216+ 42T = L. N
5. Find which of the following peints are inside and which are
outside the ellipse specified by ¢ =5 and b=1: o\
(2, -2); (=4, 2); (03, 32) ;00 2:9),
6. Dstermine the points of interscctioptt?ﬁ\ﬂle ellipse
Aot 432 ;‘1} v
and the dismeters formed hy thed p}séct-ors of the angles formed
by the axes. TFind also the length'of sither diameter.
7. Find the distance frur;r,éliéf centre of the ellipss spocitied by
a=1, b=3, to either of the p’gn‘ s on the curve whose abscizss I 2.

8 LEstablish the fo]lox\:i:flg formula for the length of ihe somi-
diarueler of gradient t{i}sﬂz
o L #
’\\"' S T ¥
This is Lhe¢Pelur equazion of the ellipse, referred to (f ag pole and
U4 as initia.\i*J,’l’rfe.
8 1 \the diamester of mradient unity is egual to the major semi-
a,:mrs§ it the cecontricity of the ellipae,

{s}\&“ﬁ'ﬁstablish the formulae :

S SP = filoe — £+ 9%
M\: ’\' 3 SP=a—eu
\ } 11. The }_‘J(ﬁllts. (‘—{_‘? y)’ (_m’ .-J/), ( — —:.’j), (JF; _:"f') 4‘1, A are the

vertices of an equilateral hexagen inscribed in the ellipse
. P gtibE= |
y ) o{a? + 5%
prove that R 1

12, If C4d and €8 are the lines Zr-y+1=0 and 3:+23;'3=O=
and £d =5, =3, find the equation of the ellipse.
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13, If €8 iz the line 4r+ +3y+2=0, and & and 4 are the points
{1, 1y and (2, 7/4), find the eipuation of the ellipse.

14, Tind the centres, and the equations and lengths of the axes
of the foilov& ing ellipses ; and sketch the curves :

by &L Y 7o
=1 R /AN
M % +7 (i )(a b) Gl
. DAY

(iii) (’"_ ,I_Qf/_.‘*.-’_).. . (iv) (f w, & "1;!)2 L \*

, (3~t+4v)* (o= 3" _ <r 2?;+1)° o4y 12

0 g, G =L Ob 30ty N
{vil) Bal4- 42— 6o+ Hy=5. (viil) 8%+ 45y* - Be+ GOyil‘lQ:O.
(ix) D2+ 32— 122+ Gy =2 (x) 924358+ 122 By =2

15, Draw on squared paper the ellipse whose fagus is the origin,
diveeteix w—g=5 and eceenfricity 4/5. Findis squabion and its
latus rectum. '\ &

18, Druw on squared paper the cllipse whose Toons 1s {1, 2, directriz
3z—4y+10=0 aml cccentricity 1 ;‘z l‘lud tts eguation and the
coordinates of its centre.

17, One vertex of a variable pa alllelogr‘am OAPE is fixed at the
origin €. The adjacent sides (I; =g and OB=5b make equal and
0}_!}][}h|t9 angles with the a-fwis, while the parallelogram opens
and shuts. DProve that 2 bzédes out 1]1{. allipso

o
_ \\(a+?;)” (a r,y
18. A straight Mg of fixed length moves 3o that its extremities lie

ontwo 1ecta,ngular axes ; prove that every point en it traces out an
ellipse.

19, If é}clc roll ms,lde another of double its radins, show that
the exirenties of a dinmeter of the rolling circle, ln\"umhlt, conneebed
with gty leseribe per pendicular stta,lght lines and that any point
inwv .1,1'1.1.va connected with the rolling cirele but not on its eireninference
de\f bes an ellipse.

20, Clircles are deseribed on AC4', BOB', the axes of an ellipse, as
\ rltctmetelc;, a variable radius vector OQR meete the fiust eircle in &
and the second in £; parailels through @ and R to €¢B and €4
respectively meet in P, Prove that the locus of P is the ellipse,
Draw the ellipse specified by a=3, b=3.

21. 2 is a point on the ellipse whose axes are 4'(’4, B'OB and » is
the projection of 7” on the minor axis B'CB ; prove that

nl2: B'n aB=04°% . CB%.
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22, N9 is a variable ordinate of the civele 224+ %=a® and P i
taken on X€ so that NP=4NQ; prove that the locus'of Pis the ellipse

I

_ @t =L
If NP=£. ¥, find the equation of the locus of £ and the avey
contained by the locus. A

23. ACA" and BOR are straight lines of lengths 20 and\'eh

" respectively, which bisect one anetlyer at right angles at @ NSO’

are tuken points § and ¢ so that OG0 =a2  TF By, B’Q'\cm» at £,
find the squation of the locus of P, and sketeh the locus, &

24. A point P moves g0 that the Tength of the taghent from £ to
& giveu cirele bears a constant ratio e, less thamSunity, to the
perpendicnlar distance of P from a given taugebt to the cirele. _
Prove that the locus of 7 s an ellipse whosd{eacintricity is ¢ and
whose latus rectum is equal to the dinineter ol\ghe circle.

25. €P and €% are two perpendicular sa&\i:diamet-ers of the ellipse
o+ 525 =1 prove that ¢*¢

} 1
| 0P o IaY e
26. If the two ellipses R\
L iNnd B
®_2+ 32 -‘-.;L ’&Hd ;_E—FE—]

L) NG .
have the same aceentricitySprove that aje,=58/,. Tf a radiuvg vector

OPQ meet the first ind M and -the second i @, prove that €/7: (1 is

constant. (The elligeed ave said b0 be humothetic or simitar o
sisnrlarly sitwated )\

27, Tf Pis a-\pomt ou the ellipse #?/u?442E=1, and €3 equal to
CS is ent off ftom €A’ and if SP and §'P are at vight angles, show
that the grdinite of 2 is equal in length to S.Y. :

28, O 84, 0B as diameters, cireles are described ; find the coordi-
nates 6P heir points of intersection with the eilipse whose soini-axes
El.rgk’alnd C8,

L3 atangent to the cirele whose equation is
\ Sy ot (at 4 )

£ eet the ellipse 2o 4%8t=1 1 p and_ @, prove that P¢ will .

\ s
) 2

subtend a righs angle at the centre of the ellj pae.

30. Find the conrdinates of the middle point of the chord of_thG
ellipse 244 3428, whoss equation is x4y =1,

3l Tind the locus of the middle points of chovds of the ellipse
a3 +-by®=1 parallel to the diameter y=mz,

32. Find the equation of the ellipse whose focus is (1, 2), diroctris
FHy=1, cccentricity 1;2. Find the equation of the straight line
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which bisects all chords parallel to the 2-axis. Draw the eurve and
the ling,

33, Prove that a pair of commen chords of the circle 22+ 38=a? - b?
and the ellipse #%a®+2%0%=1 pass through the commeon ecentre,
Find the equation of the pair.  ~ .. '

34, Prove that y=mzx+am? {p?
are the tangents of gradient m to the ellipse x%/a” -7 b?=1, and that the
join of the points of contact passes through the centre. : A

% 9. Prove that Ix +my=n Is a tangent to the ellipse x%/a? 4 y3/b? =_‘1’i’§~'\

2?li 4+ b¥mi=n2 . - Y
128. Foci of the Ellipse. If the ellipsc (Fig. 113)be faided
about the minor axis BF so that 4 falls on 4;,;6116' two
halves of the figure will be superposed. Lep®tull on P,
Son 8, ZX on Z’X’, PM on P, Then NP =e. '},
so that the ellipse may be traced from S ahd Z°X’ as locus
and directrix, instead of from 8 and ZX & The ellipse has
thus two focd and two correspondint, directrices, and the
following theorem, which was taken\int § 71 as the definition
of an ellipse, can now be proved, %\

N\

THJL‘:QREM.
The sum of the focad distamces of any potnt on an
ellipse is constant andlequal o the major awis; or
(SP+SP=4A4"
Prooy. We hawe (Fig. 113), if CN ==,
SP=ec. RMAe (CX—CN)=e.CX—e.ON=a—ex, (1)
;?’P:e'%f“’i)=e AX O+ ON)=¢. X +e.CN=a+ex, (2)
because g#50X =4 =a. By addition, we now get
N - SP+SP=2a=44"
The relations (1) and (2} that express the foeal distances

N . - : i -
~8a Fomt in terms of @, ¢, and ®, the abscissa of the point,
Are of some importance. '

EXERCISES XXXV

1. A string, 10 in. long, has its extremitics at fixed points 8 in.
apart. Tf the string is kept tight by a moving peint, find (i} the
eccentricity, (i) the major axis, (ilf} the minor axis of the ellipse
traced ont by the moving point. ' '
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2. Tf the cllipse 2349 +5%16=1 is drawn Uy the use of a string,
find the length of the string and the distance apart of s extronitios,

3. Tf & and §° are the points (ve, 0), (- wa, 0), and a varialde point
P(x, i) moves a0 that SP4+ 87 =2u, sstablish divcetly the equations ;

. i _— U
(D) 8P=aoe -2V +y%, (i) §'P=(gotzy1ys (i) =L ~
putting &% for a*(1 —e?).
N
4. One circle lies completely within another, 1f a varviable eifyle
move so that it tonches the inner of the fixed eireles extermly #nd
the outer intornatly, prove that the locus of the centre of showariable
circle is an ellipse, having for foci the centres of the fixed™eircles,

5. A variable circle, contre £, touches the fixed cipdieR
24yt -200=0 and o4y — 2834 MAOZ0.
Find the equation of the ellipse which is aN\béus of P, and the
eccentricity of the ellipse. .'\\'

6, ABCD s a jointed frame-work coqsiﬁiﬁg of four rodz 4B, A0,
DB, DO, of which the members AC apd VPP cross at P. I AB= (P
and AC=BD, and if 4 and B are fxeddprove that the loous of 7 is
an ellipse whose foci are d sadNB If AB=u, AC=5, find the

eccentricity of the ellipse, o\
7. If Pis a point on thg’é]iij)se, eceentricity ‘e, and foel § and &,
prove that N 1—e :
Ea.{r'%PSS’ L tan %IJS’SE .l +—8'

8. A is a fixed Qéint within 4 fixed circle, centre A, Through A s
described any afvcle,“centre €, of the sane radius as the fixed circly,
and intersceting it ab @ and £ Tf A¢ aud Q& cut at P, prove that
the lecus of J?\"is“an ellipse of foci 4 and A&,

129.\:’:§I'he Hyperbola. Let a variable point P move 80

thabuits distance SP from a fixed point & bears a constant

1860 ¢, greater than wnity, to its distance PM from a fixed

soditie ZX ; then the locus of Pis a hyperbola of ceoentricity

e, focus 8 and directris ZX. The form of the curve i3
N/ shown in Fig 114, ,

Let 4 and A’ divide 8X, the perpendicular from the

foeus to the directrix, internally and externally, so that

Sd=e. AX and S4'=¢. A'Y;

et ' be the middle point of A4’ and let I'SL perpendi-
calar to 44" mect the curve in 1 and L.
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Then A4’ is called the transverse azis of the hyperbola
and is denoted by 2¢; C is called the cenére and L'L the
{atus rectum of the hyperbola.

If B'CB be perpendicular to A4’, and B'C=CB=15, where
P =0?(¢*—1), then B'B is called the conjugate axis of the
hyperhola.

<

NN i : / S
i P P
O
5 L .m'\”\‘"
'\. s
N
7,
¢ X ’NT& S TS
N ,
gt
, Fic. 114,
\< THEOREMS,
i“\‘;\f\w CS8=¢. CA=00; ereeeevioireneiinrenennn, (1)
N Od=e.0X or OX=aje; v " (2)
R 55 Gt C T PO (3)
x..\‘., .
“\\/ - b2 .
D) SL=a(@-1)== ...ccc.... e (4)
Ve %

Proof. (1) SA=e.AX and Sd'=¢.4'X;
therefore, by addition,
S84 +84'=e(AX + A'X), that 18, 208=2¢, /4,
whence CS=e. (4 =ea.

G.4.0. ComM2
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" (2) Also, by subtraction,
SA'— 84 —o(A’X — AX), that is, 204 =9 OX,

whengce (4=, CX or OX= :
N
(3) O8.e.0X=e.04.C4, by (1)and (2);
hence 8. CX=CA?=u2 ) )
2 & L W bg
() SL=0.8X =e(08S—OX)=e(ae—2) =a(@d1)="
since | B=u2(t—1). ~’\ v

'EXERCISES XXXVID
1. If €8=6 and ¢4 =5, calculate & aM the distances of S and ¢

from ihe directrixz. p.\ .'

2, If 04=6 and ¢8=1, caluula,te and the distances of S and 4
from the directriz.

3. I a=4 and 6=3, La.lcu'kﬁzé ¢ a,ud the distance from the focus to
tho directrix. \ w

4 If a=3 and b=4 Lalculdtb ¢ and the distance from the focus o
the directrix. \

5. If 04 =6 auiles 2, calenlate OB, S.X and 4.

6. If C¥ =5 .md C.X=4, ealeulate 04, OB and e

7. If o:-.-\a Hhd e=4§, caleulate B, 08, Y, AX.

8. I;K%» =4 and ez;,, ealeulate o, €IS, 854, ST,

9 T80 =3 and b=>5, caleulate the lengih of the latus rectum,

?f the focus of a hyperbola, whose eccontricity is 2, ju 3 in.
fr\mn the . divectrix, ecalculate the len oths of the tramsvorse and
‘,c{m jugate axes, :
\'\ 11, Frove that £8. A'S=CB2 and A48 =(e— 13{e+ 1)

12, If ¢ > /2, show that b = .

13. Draw on squared paper the hyperbola where (4 =2, 0S=3.

14. Tf {is the semi-latus rectnm of the hy perbola specified by
Ud=a, (B=b and eccentricity =e, prove that

' Z 1 el

s - N o i
G—-e.g_l- b a\;‘fgg__j_, LA -1
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In the following exercises €04, /5 arc taken as axes of 2 aud 4
ON, &P are the abscissa and ordinate of Pz, ), a point on the
hyperbola. _
15, If a=4, 6=38, SP=5, then e=5/4;, NX=4, CN=36/5,
NP=+6314/5 and a%a® —y2it=1
16. If a=:12, b=5, SP=13, then ¢=13/12, ¥A=12, ON=300/13,
NP=x104114/13 and aia?—321bi=1,
17. If {», i) are the coovdinates of L, prove that 2%a?-2/68=1. 4 ':\'
18. )t b= and y=x meots the hyperbols in the point (:r;\;?,
prove that b "
a=+ — @ _J 'lnd .'I.‘_ ?L 1. ‘
l\}{b‘z—az O'.2 b u' p -
~\

130. Canonical Bquation of the Hyperbola. If the h yper-
bola, whose semi-axes are (4 =a and CB=#6, be referred
to €4 and OB as ases of 2 and 1 , its e{i}\‘hon then called
the canonical equation, is

A

2 2 {
Let Pz, i) be any point on the curve (Fig. 114); 1
N=p, ¥P=y. Then ~3°
Y= NPi= {’*— NS2=et PMI-NS?
-y @_&2, Nz
_eﬁ(\ XPR—(CON~CSy

¢ :v-\e’ (a‘——-) —(x—ee), by (1) and (2) of §128,

Ny

=(ex— a ) —{(x—ael
=2t -0l — n? — a%?

= 2
NN =(a*—a? (e —~1)
N
:\} =(:t.:2—a2}-f)2—.
Co o?
W) 2
. yt w—a? &
therefore : E:_ai—z@_i’
: o
or A B
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Note. (1) The equation may bhe put in the form
oy B .01', NP2 0F:s
T— @ ON?—(CA% ¢4?
or, as it is nsually wriften,
NP2 Cne O
AN AN 0ar \

(2) The curve is symmetrical about both axes ;\for* the
image of P in A4, viz. (2, —y). is on the curyerand the
image of P in B, viz. (—a, ), 18 also on theghmyve

(3) Every straight line drawn through ¢ aid tummated
by the curve is Bisected at 0, such a hfig being called a
diameter of the hyperbola; for if ZORNS bisected at €, P’
is the point (—a, —y), and {—&, — )8 on the curve.

S
() s

branches of the eurve. \+"

)

4,) outside both

_¥ 2 w > 1 for any pomt (%5, ¥,) inside either branch

of the eurve.
\EXERCISES XXXVIIL

1., Find the\\seutuut& of the hyperbola ——-2 =1.

16
2, Find, the eccentricity abd the semi- htus rectum of the hyperbola
P \ ¢ _:c_g K -1
N 169

3\Fmd the canonical equation of the hyperbola whose geIni-
(:L\ uﬂato axig iz 3 and semi-latns rectum 1,

4, Find the dlsta.nce from the focus to the direstrix of the

I
¥

144 25

5. Find which of the following points are inside and which are nob
inside a branch of the hvpelbo]a, specified by a=4, b=31: (& ~5)
(=52), (6, —4), (-7, -4 :

6. it m{é find the eoordinates of Lhc pomts of intorsection of

DL

y=mz and y== —mz with the hypelbola, po) -—b—;-wl Discuss the case
where mwf—; ;
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7. Bhow that lic hisectors of the angles formed Ly €4 and OB
mect the curve in four veal and distinet ])omt% if b=
8. If «=h prove that e=/2.

9, Find the distance from the centre of the hvpel hola specified by
a=4, b=3, to the points on Lhe curve whose abscissa is 6.

10. Establish the following formula for the length r of the semi-
dismeter of gradient tan

. b L\
Tefeostd =T \\ ’
‘When is » real and finite, infinite, imaginary ? ~ "
This-is the jltmf"u: equation of the hvper‘boh referred to Cps pole and
'4 as initial line { ¢

11. Estaldish the formulae \/

N DL TR

SP=ep —a. ’\ &

12, Find the equations and lengths ofhthe axes, and also the co-
ordinates of the centres of the I'oliowmg hyperbolas. Bketch the
curves

() (5&;1)”_@-:2)":1 . R, @1) 2 1:

(51} 5%~ 4 — B — Sy =130 (n) 8~b~-4‘u - B 60y =28 ;
()(“7 g?/)z (r'f+2«*}\;1 (v ) '<y__+1) (;r—i—j{a—‘z‘,)z:l

13. Diaw in ong Nﬂam the Lyperbola a%a?—33t*=1, and the
lines y= L bafu, O

14, Draw m’an dlaglam the byperbela J_M__b_’= -1, and the lines

y= = baefer, 4 \
NN

15, I‘%g rading vector CP=r ho dl awn to mect the hyperbola
w8yt Lybi =1 in P, and another ra.dlu:a vector {'47=v/, perpendicular

to B8 to meet the h)pmbola #4B? - a¥e?=1 in P, prove that

NS

“\J 1.1 1.1
) ) PR i M

16. Draw on squared paper the hyperbola whose focus is (-2, 1),
dircebrix w+-y =2, and eccentricity 2. Find the equation of the curve
and its latus Tectum.

17. Draw on squared paper the hyperbola whose foeus is the
origin, directrix x#+» =13, and eccentricity »2. Tind its equation and
the coordinates of its centre.

N
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18, Prove that the equations
y=mx + +/a?m?_ p?
. #ive the tangents of gradient m to the hyperhola x%a—y%ibt=1.
19, Prove that the line Ix+ my=mn touches the hyperhola
x¥a? —¥ipt=1 if a’li— pinte nZ, __ O\

: : O\

131. Foci of the Hyperbola. If the hyperbola (Fig:"]l%)
be folded aboub the conjugate axis BB so that AMalls on
A’ one branch of the figure will be superpioiad on the
other. Let 2 fall on P, S on &, ZX on Z' X PM on P'M.
Then S'P'=e. P’M’, so that the hyperbola’may he traced
from 8 and Z'X" as focus and directrixNfistead of from S
and ZX. The hyperbola has thus fgoXoci and two corre-
sponding directrices, and the followitg® theorem, which was
taken in §72 as the definition of “a'hyperbola, can now be
proved, O
TREOREM.

The difference of theSfocul distamees of amy point on
fyperbola is constaygband equal to the transverse axis; or

O SP~SP=44
Proof. We lg,ve (Fig. 114), if ON =g, :
sp =:g"\“}ﬁ3= ¢ {UN-CX)=c.ON—e.CX=ex—a, (1)
BPze. MP=e (ON+X'0)=c.ON+e. OX =an+a,(2)
}a@&fiée ¢.0X=0Ad=a By subtraction, we now get
N\ SP—SP=20=AA"

:"\:' . ) )

“NY If P were on the other branch, the abscissa @ would be
\ 4

negative, and we should have

SP=—erta, ... (1 7 SP=—ex—a.... (2)
and - SP-8P=2u=A4"

The expressions (1), (2), (1), (2) for the focal distances
are of some importance; these expressions are all pogitive
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EXFRCISES XXXIX,

1. In the mechanical description of a hyperbola, § 72, the ruler S'A
iz 12 in. long, the distance between the fixed end & of the ruler and
the fixed end 8 of the string is 10 jn, and the string is 4 iu. long ;
find (1) the cecontrieity, (i) the transverse axis, (i) the conjugate axis
of the hyperbola described. -

R
2. If the hyperbola Ic G-%=1 is mechanically deseribed, whaphys
. the distance hetween the fixed ends of ruler and string? 7% N

3, If Sand 8 are the points {ae, 0), (—re, 03, and a ‘Tal-ialml\é point

Plz, 7 move 5o that §P~ §"P=2a, establish directly the qiations :
() SP=J{lwe—a@+y%; (1) SP=Vlae 5%
(iil} affa?—p5ht=1, putting D¥=o(e¥=1). NN

4, One circle les completely outzide another. NP a variable circle
move so that it touches both elrcles exsernallyor both internally,
prove that the locus of the centre of the wdiable circle is a hyper-
holu, having for foei the centres of thesxed circles. Diseuss the
vase where the contacts wre one internaPadd one external.

5. A variable ¢ircle, centre P, touches the fixed circles

wiy? —8r+12=0 AW w2 482+15=0;
find the equations of the hypetbelas which form the locus of P, and
their eceentricitios. N\

8. Throngh a given pomt P, outside a fized civele, centre 0, is
described any circle ofthe same radius as the fixed civele.  If the line
joining the centrecof e variable cirele to £ meoct the common ehord
of the two circles iING, prove that the locus of ¢ isah yperbola whose
fool are fand B0\ _

T.0A parzﬁl&éi&-"passes through two Axed points and has its axis in
a given difestion. Prove thab the Jocus of its focus is a hyper-
Twsla. | A

8. \i'\;\\'a:riable girele touches two fixed straight lines on which A
and'Hare fixed points. The second tangents drawn from 4, B to the
citgle meet in P Prove that the locos of P isa hyperbola.

eN® .
\\/ 132, The Asymptotes of the Hyperbola. - The equation

N\

2o — 2% =1, may be written in the form

(5—-—3) ({L_+_b)_ (1)
The two lines

©_y_ zoY_o
g =0......(2) and_(ﬁb 0 vivrreeene(3)
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are the as

[on, xvm,

ymptotes of (1). For if we solve equations (1)

and (2) or cquations (1) and (3) as simultaneous equations,

we get the anomalous equation 0=1, w

in question. Hence (§117) the

at two points at infinity,

here a quadratic is

lines (2) and (3) both nucet (1)

to (1) whose points of contact

and (3) are shown in

@ powni P oon the cur

PHM . PN is constant.

Fig.

and may be considered tangents

are at infinity. Lines(@)
114, The asymptoteghave
certain important properties which we proceed fo imigs\t’-igate.
TarcrEM 1. _ ~\

If parallels to the asymptotes of o hyperbolmrawn, from
ve meet them ot M ond N, then

N/

~

/AN

A\ F1e. 115

(\" Let PH, PK (Fig. 115) be the perpendiculars from the

\3 " point Pz, %) on the hyperbola (1) to the asymptotes (2)
and (8). Then {(numerwcaliy)

€,y vy oy
PH. - b ) a b =a,2 ?)2:_ U,Qb‘“’u,
N TR NETR gtE

because z?/a? —y2 /2 =1,
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Now let 2w be the angle between the asymptotes; then
(numerieally)

PMsin20=PH and PNsin2e=PFPK;

218
therefore PN .PNsin®*2w=PH FPK= a;lf?, ¢
80 that PM. PN is eonstant. e G
Since tan w=>5/a, N
i 9y 2 tEV 2h "\
S se = 14+tanfe w4 A
2 pe €%
Hence, PM.PN= 21-3: o)

so that the value of the constant is (u? %4,
The theorem may be stated ana]yt-ic’a}& a8

THEOR M.

If o hyperbole, of semi-dwes o and b, be referred to its
wsymptotes os awes of m anely, ils constrawnt equation may
be written in the formgd

e
amd its freedom, efabations in the form
A\ c

cht, YZ‘EJ

¥/
where ¢ LT+ H7)/4.
Théss.axes are rectangular if, and only if, the asymptotes
are ~a't-\-1ght angles to each other; in this ease the hyperbola
isdalled a rectangular kyperbola, or an equilateral hyperbola.
~{JIf the axes arc not the asymptotes but lines parallel to
the asymptotes, then, as is casily seen by changing the
origin, the equation of the hyperbola will take the form

axy +bxtey-+d=10,
an equation which may also be written in the form
| _px-+a
S rxs
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THLOREM 3.

If PM, PN, P, P'N' are drawn povalled o the
asymptotes from points P, P' on the cwrve, then ME', 'K

and PP are parallel,

For, in Fig, 115, MN', M'N arc parallel if \
UM O0M =0N": ON,

that is, if O . ON =0} " CN7; and this is true, ain\(':(? “ﬁ, r
Lie on tho curve ay =~ W\
Again, parallelogram CMPN =vparallelogramd U4 PN,
since OM . ON = O}, CN, 2 i
And the parallelograms CHPN, CHPAY dre double the
triangles NM' P, Nil'[” respectively ; woBhat the triangles
NM'P, NM'P are equal, and therel®e AN is parallel
to PP O
' THEOREM\ L.
If the chord PP’ of a hygparbola weet the asymptotes ia
B, I, then RP=R'P. N g
Using the notation of Theorem 3, we sce that MN', M'N,
PP in Fig. 115 are_the diagonals of parallelograms, and
that the other diagamals form one and the same straight,
line through €. Fénce the same diameter of the hyperbola
bisects PP 4id“MN' But the dismetor which bisects
MN' also bisects the parallel RE’; therefore PI* and RA
have the saie middle point, V, so that BP = ',

O
INY
&

&l n - =
O\ THEOREM 5. _
\QW@ locus of the middle poinis of purallel chords is o

Aiwmeter,

The diameter which bisects PP in Fig. 115 also bisects
T MN. Ay PP moves perallel fo itself, so does WA, and

MN"is constantly bisected by the same diameter ; therefore
80 is PP

THrOREM 6,
The ?}(}‘T’t}:@n Of [ ﬁ!’:{r?‘?ge’}?,t /éfj?_tgqﬂcgpted E)(?f'?,f"'ee?l' ﬂi.i?
asymplotes 1s bi@q_ctc_d wt the poiné of contact, and the

y
5
o
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tangent Jorms with the asymplotes a triangle of constant
(erec.

The first part follows frowm each of Theorems 3 and 4
Take Theorem 3 and let P’ (Fig. 115) move into eoincidence
with P; then M’ coincides with M and N with N; P/¥
bocomes the tangent at F, so that the tangent at P ¢
paraliel to MN. If the tangent meet the asymptotas ~at
T, T, then PT and PI" are Toth equal to AN, N

Aomn triangle OFT is twice the parallclogram, CMPN
and nhere[ore lts area is constant . |

S

133. Pelar Eguation of a Comic. The pohﬁ,}\equa-tion of
a conic with the focus as pole i often usefill, and though
we shall make little use of it in this book we shall establish
it here so that it may be referred to whén requived.

Take & in Tig. 113 as poley 'm}S}.’ as initial line;
denote §°P by = and angle X'S'E by 6. Then

§P=¢. MP=¢ X'N=o(ZSHSN)y=c. X'S +e. SN.(1)

But e, X'¥ is equal @@.the serni-latus rectum, which we
shall denote by £ ; alﬁo "
S’ N=8P qosVS'P=rcos(r—0)=—rcos . ...... (2)
Equation (1‘)’}30\\; becomes
.\"',—:‘E— ercosf or r(ldecosf)=I ..........{3)

N

so that/le required equation is

Nl -
O Tldqecosg T (4)

N The proof holds for any conic; for the parabola e=1.

N\ N

If the initial line is not &X', but a line which makes
with & X the angle «, then the vectorial angle £ will not
be X'9'P but X'S'P increased or diminished by c.; instead
of 6 in equation (4) we shall have GRS

The changes in equation {4) when the vectorial angle is
not X'S'P but XS8'P, or when the focus S, 1nstead of &
i3 po]e wﬂi be casily niade.
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Ex. Show that the semi-latus rectum is the harinonic mean belween
" the two sepments S'P, §'Q of any focal chord . _ ]
Let 6 be the angle A75°2; then (f+) is the angle X"8'¢. Frow

equation {4) we have
1 T4ecosf 1-4-ccos(B47)
= “ e tusi\yrm)

SPTT 1T 59 {

: . 112 O
and thevefore S.J.P_f_:g,@ =7 R
gince cos (f+7)= —cos 4. Fonce {§ 4} 7 is the hurmonic mean Ketwbon

8P and 5g. \\ '
EXERCISES XL. o
. '\ #

1, Prove that the line y=ma meets the cufNC Yot — y2ht=1 in
real points if m Hes hotween bja and — b, )

2. What are the asymptotes of the h}'psg;%bi’&s :
P ' [T 1
() 4ot 0y2=36 (i) a2 =150 i) (—"‘4” AL

g~

o (2= fpr oy o R ,
o Cpt ey, @S

5 —
Draw the curves and the asy&iﬁtotes.
3. Prove that the conjllzgé:%e byperbola #%/a?—2/%= —1 lLas the

same asymptotes us o+ gbi= 41 Bhow the asymptotes and both
errves in one diagram,

+L) - .y .
4, Tf the asyrg%fﬂ:és of a hyperbola of eccentricily e meet ab an
angle 20, provesthab gin w=+/T— 1/¢, secw=e, and tanw—=ve—1.

5. Tf the ﬁ?\iﬂ"ilyp(}l‘bol&-’s

A/
8, Gl L i
”\‘:\ 7 {JB'_] and a—]g—b—lg—-l

hayehe same eccentricity, prove that afe =5%. If = 1adiug voctor

mdpbithe first in 2 and the sccond in g, prove that OF: 4 is constant.
O Jlbe hyperbolas are said to be howmuthetic or simifar and similorly
" \3tuatea.) )

\ ) R Discuss the variation of the form of the hyperhola «3/af - y%i=k
as & diminishes from 1 to 0.

7. A rectangle is formed by drawing paraliels to 44’ through
B, B and to BF through 4, 4’; prove that the diagonals of the
rectangle are the asymptotes,

8. If the axes of » and ¥ are at right angles, show that the
length of each axis of the hyperbola xy=c? is 2e,/2.
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9. Prove that sy 4 2x —3y=0 represents a rectangular hyperbola..
Find the equations of its asymptotes and the coordinates of its centre.
Draw the curve and its asymptotes.

10. Find the asymptotes of the hyperbola
axy+betey+d=0 I
11. Find the lengtha of the semi-axes of the rectangular hyperbolas
(D ay=1; (i) Gay+de—9y="7.

12, Prove that the prodnct of the perpendiculars from any puirl‘t«;\
of the eurve 3o fdpy =46 on to the asywmptotes of the curve ig the
constant /5. Find the sgnares of the semi-axes of the hypabola
represented by 3224 day=40, ™

N

13. Find the asymptotes and centres of the hyperbola 0
() o—y+Dlr+y—2)=3; (i) 322 doy - 41408 6y=3.

14, Pind the cquation of the hyperbola whobedasymptotes are
parallel fo 22+ 3y=0, x—2y=0, whose centro f$at’ (1, 2) and which
passes through (5, 3). '\ &

15. Show that the two chords of the b yp’fzrﬁola.

ay — 2o -3y +H0 .
which pass through (0, 2) and sultead a right angle at the origin
are inclined to the r-axis at angles185° and cot™15,

16. F is any point on the fixed line y=mz, 4 and B ave the fixed
pointa (¢, O} and { —¢, 0).  The line £*¢ subtends » right angle at each
nf the peints 4 and 5 ; Er\(}ve that the locus of ¢ is & hyperbola one
of whose asymplotes i{ the y-axis and the other the perpendieular
through the origin t\thé’ loens of . Bketeh the locus of @

17. Prove thatdhe equation of the tangent to
A\ '\.. g .T.'r.‘; =02.’

at the poin.téz;;’, ), 18 2+ =2

18, Prowe’ that the equation of the chord of zy=c% whose
ux t-x'eu{ Yeg are {(efy, oft;) and (o, ¢ft,), 18

2 S

N ' ?_f.(1+1)_-_r
NY P=\g " "
"\} Fleduce the equation of the tangent at the point &

19. A parallelogram has its sides dpa,rallel to the asymptotes of a
hyperhola and the extremities of one diagonal lie on the curve : prove
that the other diagonut passes through the centre. Deduce that the
lecus of middle points of parallel chords of a hyperbola is a diameter.

20. A chord P@ of a hyperbola ruects an asymptote in , and M, ¥
are points on this asymptobe such that WP, N6 are parallel to the
other asymptote ; prove that C3f=NR,
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2l. Any two poiuts P, ¢ are taken on a hyperbiola, centrs €
Lines through P § parallel to the asvinptotes mest in A, Prove
that A biscels Q.

22. £ and F ave fixed points on a hyperbola, /* a variable point.
P, PF meet an asymptote in ¥, & Prove that JA is of coustant
length. By considering P at {ufinfty on the cu vve, vorily what the
constant length is, : \

23. Show that the tangenis at the extromities of 3 chofdyof a
hyperbols mect either asymptote in poinss equally distanaSrint its

inbersection with the chord. \

24, M is any chord of a hyperhola and 2 is an cxltemnity of the
diameter bisecting the chord. Lines MA, PG, aRK ‘e drawn
paralle]l to one asviuptote to mect the other in &, 9QM". Bhow that
CR.CR'= (@2, whero € is the centre of the Fperbola,

25. Prove that the tangents ut the verticheNof a hyperbola meect
its asymptotos on the circumference of LHB\ Bircle of which the line
joining the foel is o diameter. A

26. Given one asymptote of a hjperbola, two tangents and the
point of contact of one of them, consbhudet the other asymplobe.

27, The tangent at & poiut f ’sr.:r} % hyperbola meets the azympboles
in 7, 7 and the eivenm-circlandf the triangle C¥ 7" cuts the axes at

@ and g ; prove that the ling\Gy is the normal at the point £ (that is,
the perpendicular at P to the tan gent).

28. The straight ligé Zlo+u/b=1 mests the axes at 4, B, and C'is’

the middle point of /4%,  Find the equation of the hyperbola which

passes through € &nd has the axes as asyvmptotes. 1 the axes ave

-rectangular, find bhe length of either semi-axis.

29. If », .ﬂ'i.zbe‘focal radii of an ellipse at right angles o cach other,

prm‘ethzgt’,\"z (1 1‘?(1 14
N 2o =

-is h\g.»}ant,' where 7 is the seri-latus recbun:.

N80, If £, 7 Le two foeal chords of a parabola at right angles to each
[

f ; T.,— 2{1

where [ is the semi latus rectum.
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CHAPTER XIX. <O
THE ELLIPSE AS THE ORTTIOGONAL PROJEG’BiON
OF A CIRCLE. & \

134. The Auxiliary Circle. We shall 11( 0n31d<,r the
dhpue from another point of view. ¢ major axis

44" of the ellipse #%fu24-4%82=1, as di '\}nctu describe a
eircle ; its equatlon 18 X

—i—'yz"‘a?‘ AN v}
% \/
¥ ™
\‘&“
H
P
NS A T =
o i/
~0 B
L 3
N Fie. 116.

/Le\t NP, an ordinate of the ellipse, meet this circle in
s/Q (Fig. 116). Then

CN?  NP? T ON? NQE
e =t ad =l
NP: NGP
BT o

thercfore

b _
Np=_-NQ.
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Hence the ellipse #%a?+42°=1 may be derived from
the civele #*+y®=a? by shortening cach ordinate NQ of
the circle in the ratio 6o Or we may suppose the cirele
AQA" to be tilted round A4’ out of the horizontal plane
of the paper, till @ lies vertically over P, then the upper
half 404" of the eirele will lie vertically over AP4, the
upper half of the ellipse, and the under half of the circle
will lie vertically below the under half of the ellipse..* I
vertical rays descend upon the cirele in its tilted fosition,
those which graze the cireumfercnec of the eirele Geill mark
the outline of the cllipse. Henco an cllipsesis said to be
the orthogonal projectron of a cirele. Thepghcle on A4
as diameter is called the auxiliary circle gud I, ¢ are called
corresponding points. 4

The angle ACQ is called the eccentri¢ angle of P, and if
this angle is denoted by # the coopdinates of P are

Z=acosf, J&=hbsinb.
For cos0 =EN g, a,_rgdfj;-hérel’ore x=q cos @,

Q" w
o O e
gin §= T and therefore ¥()=a sin 8;
bt Ay=wp =; NQ=Dsin 6,

P is often called * the point 6.7
The equations z=gcosf), y=>hbsind
are Fresdom Equations of the cllipse.

lg'l:\:]\“ Show that tho ares of the ellipse is Tub.

Gomnpare the areas of two sirips, one bounded by the z-axis, the

Janxiliary cirele and {wo ordinates N¢, ¥'¢, and the other buundTed
APy the w-axis, the ellipse and the two corresponding ordinates NP,
S AP, The line &N is the same for both strips, and all correspond-

ing ordinates are in the ratio & : ¢, so that
area of ellipse : area of circle=%: a.

Thevefore  area of ellipse= 2 -{area of cirele)= C_(: . ral=mab.

Bx. 2. Tf M is the projection of I on the minor axis BS', and if
HP meet the circle on BH as diameter in 47, show that MP: HP'®
constant and equal to @:8.  Deduco the theorem that the eircle on
BB as diaweter is the orthegonal projection of the ellipse.
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We have, from the equations of ellipse and cirele,

AP oM MPE o O
o Tr=h e =h

_ M2 MPE NP a
so that =T sy

By tilting the ellipse round BA till P lies vertically over I”, we

prove the projeetion theovem, as we proved the corresponding theoremsA \

m the text on the relation of the anxiliary circle to the ellipse. QW™
NS ©

N\

135, The Tangent and Normal. The normal at agj’"ﬁbint
P on a curve is the perpendicular through ZF{to the
tangene to the curve at 2. We now prove ()

TurOREM 1. \\

Tangents at P and corresponging points on the
ellipse and the auwiliory cvrole, meel gn the mujor awis at
i point T such that CN . CT=0A",

wheve N is the projection of P or @ on the major amis
(Fig. 116). SN

Let QQ, a secant of{the circle, meet 44" in T Now
tilt the ecirele, and the_gecant with it, round 774.4” till the
cirele projeets intduthe ellipse; 7"Q then projects into
T'PP, the corrésponding secant of the ellipse. Let "
move along $K€ major axis so that 7'QQ’ turns round ¢,
bringing () %ifally mto ecineidence with @; 7 will reach
SOMLC poi;:ﬁ:?T say, on the axis 44" Since P, @ and P, ¢
are paitsoef corresponding points, P’ will come into comnei-
dengawith I when (' comes into coincidence with &
Héned the tangents at P and @ to the ellipse and the circle
“sill moet at 77
v From the similar tviangles CNQ, CQT, we now have

ON.0Q=CQ: CT
or ON . OT=0Q2=CA>,

In the same way, by making use of the ecircle on BE as
diameter (5134, Ex. 2), we deduce
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THFOREM 2.

The tangents at P and 0, corresponding poinks on the
ellipse and the circle on BE as diameter, meet the minor
w18 af @ point t such that

Cn. =012, _ N
where m 18 the prajection of I or Q@ on the minor TSN

From Theoreras I and 2 we readily dednce the €yhations
of the tangent and normal at any poing Placos 8, bsin6)
! : N

on the ellipse o?/a?+ 322 =1, _ P
Lot the tangent (Fig. 11G) mect the ”1‘@,3'61' and minor

axes in 7 and ¢ respectively ; O
' CA*  a o GO b
th = a2, r_.:' o=
on - or 0N " cosd f\_f;‘? ind
and therefore the equation of théstangent is (532, (4))
\ Sy
RN s IR 0
or Nl L L @)

\"\ a b
If P is thepoint (i, 4,), then OS‘.":@%-":(:I, Ct =12y, , and
equation ( 1)‘b§somes zx
W =

p e FOOO (3)

bi

¢

Theptormal at P is the crpendicnlar to the line (2]

b Q%h- the point (g cos @, %sin dy; the equation of the
e al 1s therefore

3 . P _a,___ ) . Z) B

\\\, {x G’mse)cosﬁ (y—-bsme)sh_lﬁ_(,
' or —ax——_b..y__. 2_ ]2 4'
cos0 an B TP e (4)

‘The equation of the normal at (), 1) is

2 2
aﬁ—~33—r=a“’—b‘3. ..................... {5)
L %N :
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Ex. 1. Show that the condition that the }mc
Loy m ce s e, {i)
shoutd Le u tangent to the cllipse a¥/a? +#3b7=1 is
Fa?+ m,zb- =n
Equation (i} must, if the line touch the ellipse at the peint §, be
equivalent to equation (2} above. Hence

{ cosf e sind (iDn

BT T T U
and therefors a2 + Bt =02 {cos2 B + sin? §) = n N
N

The point of contact is given by equations (i0).

Otherndse.  Fxpress the condition that the eqnations {9{ the line
and the ellipse, regarded as simultaneous equations, s]{uld have a
repented solulion, ['he equation for & is \

(P4 m2DR) i — ualidie 4 ol (n? — bty 0
and the condition for equal roots is Oy
nat = a{Pat+ mh) (e r‘z{b’)
or Bl mB =NV 4
Ex 2. If §¥, §F are the pelpenéhcuhr:. from the foei on the

tangent PT at P show that A
SF. ngoﬁs

S is the point {eq, 0) and & the point { —eq, 0} (Fig 116} ; form the
expressions (§30) for the Jénkthy of the perpendiculars on the line
given by equation (2) of &}N text which way be written in the form

and we get \x{cos Gaysin - be
" N eab cos §— b — peeh cos B — ab
ST, SY ’f{b’cogue-l-u?sm‘ﬁ) N0 cos? 1+ a¥sin® B
x'\: ~7 _ t#H(] — Feos? 8}
Y T oot atsin?
_Bu't\ﬁ@“——"ag—b?, and the numerator becomes
a3 B (e — a? cos? 0+ Dloos? )y = b2 {a%sin2 @ 4+ D cos® ),
" 'm}i therefore SV, 87 =0
/ Bx. 3. If pis the pmpor\dlcu]m from. the centre € on the tangent
P11 at P, show that = abjJ(a?sin? § + B2 cos? §).
€' iz the point (0, 0) ; tha required perpendicular p is thevefove the
numerical value of — oblJ(Heos? 0+ a2sin®6).

Ex. 4. R is the point of interscetion of the normals at the points
£ and § on the ellipse 2%/a?+y%fb?==1, and the line joining the centre
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€ to &£ bisects PG ; show that the tangenls at /™ and @ infersecs ag
right angles, )

Let 8, ¢ bo the eccentrie angles of the points 7, Q. _

Then the equations of PR, 4R, the normals at £ and 4, are

oy By ar by

_ —gf_ B ] ! — g 2
cosd wng ° & and costh BN
Hence, by § 38, the equation of ¢ is Q.
ar b ar hy A\ ¢
—_ ____—_' ) ———_— ”\ \
costl sinf cosdh sin N\
ax{oos p— cos &) By(sin b —sin () « W

or TAMR R ANt LA
cos f cos ¢ _ singsing &N

But &R passes through the point { g(cos £+ cos 'dgikg(’sin &+ sin <,I'>)}:
since this iz the middle potnt of P9 -7 \J
Therefore a_?{,‘;zfg’c;;‘;fz &) 2&?11;12%%;%2 @,
boos§ & oos g\
_ asinf esingyy
Now the equation of the tan ge‘nt"gt”j’ is

which reduces to

0
@ L,
50 that the gradient of the tangent iz — b ecos Biasin @ ; and similarly
the gradient of the tan@unt at & 1s —beos dlasin .

But we have showgithat the product of these js — 1.

Honce the the '

©cos B3 guin f_
A\ B

@{sqffﬁa proved.

2N " EXERCISES XLI
1 If @5%eos 6, y=bsin 8, prove that a%u? +y2ii=1.

2. Find the cecentric angle of the point (4, ~1'2) on {he ellipse
aiasl W = ?
/25041
A\ 3" Prove that the eccentric angles of the extremities of the latera
Jacta of the ellipse a2/a2+5216%=1 are given by the equation

tan 8= + bjoe.

e}. Find the abscizsaé and ordinates of the points on the ellipse
et + 322 = | Whoso eccontric an gles are 307, 45°, 60°,

5, Prove that the eccontric an gles of the extremitics of a diameter
differ by mw -

6. Prove that, with the wsual notation,
SP=a{l~ccos) and SP=a(l-+ecos &).
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7. If ¥ is the point on the auxiliary circle corresponding to L, an
extremity of the latus rectum, prosve that Sif— A
8. If P, § points on an ellipss, whose eccentric angles are 4, ¢,
correspond to the points p, g on the auxiiiary circle, prove that the
cquasions of P and pg are
g cos {6+ fb)-i—'% #An $(0+ )= cos (6 - ¢),

N

Ecos%(ﬂ-ﬁ-d})-ﬁ-‘g sin J{H+hy=cos §(H - 4. ()
£\
Deduce (i) that Pg, py intersect on the major axis, (i1} the aguation
of the tangent at the point & Y

9, If Pand & ave corresponding points on the ellipse xﬂli“{i3+ ¥HE=1
and its auxiliary ecirele, and e is the gradient of CP3findhthe gradient
of £, /

10, If P, @ are corresponding points on the ellipse aia®+3302=1
and its auxiliary circle, and = is the gradienb’q}\tfm tangent at £’ to
the ellipse, find the gradient of the tangent, a,t?(g to the circle.

11, 1f #; is the abscissa and # the ecgenttic angle of P, prove that,
with the usual notation, o\ o

Oz =ajeos §, and Fs(a?— 5 =asin’Heos .

N7 is calied the subtangent. N

12, If # is the eccentric ”arfgle' of P, prove that the gradient of the
tangent PT s — b cos Bia sin B

13. Prove that t-he,aéﬁét-ion of the tangent at the point (o, ) on
the sllipse &%/a® +j;2}l‘<%'t is

\ 2y |
», & T

by using the ‘ehﬁat-ion of the tangent at the corresponding peint on

the anxiliary etrele,

N

14, If:\@D is the semi-diameter parailel to 7 the tangent at the
pt}int’b, prove that 7 is the point B-}-g or { —asin &, b cos &), and that
TS [

N OPi 4 ODt= B
15, Drove that the cirele on the subtangent N7 as diameter cuts
the auxiliary eireles orthogonally.

16. The tangent at P meets the majer axis in ¥; AP and A'P
moet the perpendicular to A4’ throogh 7 in § and §f respectively ;
prove that £¢ is bisceled at 7

17, If Fis the projection of the centre {' on a variable tangent at
P to the ellipse 2%/a?+2{B2=1, prove that the maxinum value of PE
15 6—b.
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18, Find the condition that lotmy=1 way be 4 tangent to the
ellipse @2/a? 4 3202 =1,

19, A variable cirelo of the same vadius as the cirele
2yt 8r =84

passes through the point (4, 0); prove that the comnion chord of&iy
eircles touches the ellipse 2525 4 57/0=1.

20. Prove that the equations of the tan frents to the ellipsé \J)
7\

a4 atihz=1 « \
.

of gradient m are w=mztan I 72 (™

4

21, Tf AL, BR ave the principal axes of an ellipseiahd AA%=28R"
show that the sun of the squares of the perpendfunlars from B Hon
any tangent to the enrve ig conalant., ’

22, Find the eccentric angle of ¢ if i} afingont at ¢) is perpen-
dicalar to the tungrent at £ whose eceentpic angle is & and prova
that the locug of Intersection of the ta gents at B, ¢ s the eivclg
‘called the directorcircle, whose equadionds

A
23. Prove that the product §F%he distances of a chord of an ellipse

from the two tangents parallel to it is the difference between the

square of the seralaxis miner and the product of the perpendiculars
on the chord from the foel, ™

24. The tangent :11@_ norteal at a poing 2 on an ellipse mest the

minor axis fi £ andigy prove that tg subtends a right. angle at cach of
the foei, %\

7. Any tehgent lo the ellipse ot 4 aphibd =1{a+h) meehs the
Mipso dliofin=1 in two points, thé normuls at which are
“‘-lmdistﬂ.}l‘t.fﬁ‘ﬁm the cengre,

26. #d the condition that, lrtmy=mn may be a normal to the
ellipgeNeti2 1 b =<1

”

287 It fmm'any point on an ellipse perpendiculars are drawn to the

w&Xes, show that the line joining the feet of these perpendiculars i
pnlways normal to g fixed concentrie ellipst, .

_ 28, Show that, if the normal to an cllipse meets the nrinor axis
n g and 8 is a focns, Sg=e. Iy
29, Tt PP e a dismeter of the ellipse 2%/62 Lojbt=1, ]I?l‘m'e that f_h.e
Iocus of the Tuterseetion of the normal ab P with the ordinate at P i€
' P A
@ (2at TR
30, _Pis the .pniint on the ollipse #fa?+328=1 whose coordinates
are o iNu b, b8 e T by find (i) the length of the porpendicular ¢
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let fall from the centre € on the tangent, at (i) the length £,
{ifi} the equation of the nomial at £, (1v) the coordinates of the point
where the normal meets the curve again.

3l IE 8%, 8T arc the porpendiculars from the foci of an allipse
on the tangent at P, and if the normal al P meets ths major axis
in &, prove that '

1 1 4
STt ETE P A
is constant. RAY,

82. Tf the chords joining the pairs of points a, Band vy, 8 respg&cbi;ely
meet the major axis in two points equidistant from the centre, proye that

N

tangtan_—"gtan;/tan§=1. nls.
272 g g RS
33. Find the equation of the ollipse, whose sémbakes are @, b,
veferred to 4’4 and the tangent ab. 4” as nxes Ot 2 and . By
considering the limiting form of the equation mane 1ends towards 1,
while &, A" remain fized, show that the p;u-&bbia. i a limiting form
of the ellipse. N

34, If B, ¢ ave the eccentric angles of :t}ie extremities of a chord
through the focus, prove that N

o8 6—; iz =Rdos o+¢ Fg ?,

X
o

35. P89, PYR are two focal ehords of an ellipze and the eccentric

angles of the points §-and@are ¢, and ¢,  Show that tan % tan £2

is o constant ratio for a,lifposit-ions of 2 2

38. 1f I'g), PR a.re\{\ml chords of an ellipse and 2q, 23, 2y are the
eccentrie angles of 'R, ¢, &, prove that

< tan®a tan Stan y=1.

37. T 1’,,Q:, e the points 6, ¢ on the ollipse #¥a?+3%h=1 such
that S, F@ are parallel and in the same direction, prove (1) that
e=sin 5@;—' isin 3(h-+ &), (2) that £ touches the ellipse

.f'\ 2ty =1/l
and\(B) that the tangents at P, @ intersect on the auxiliary cirele.
\38. B P are corresponding points on the ellipse a%/e?+y8bt=1
and its avxiliary civele. If €2 meets the normal at P in @, find the
equation of the locus of @,

136. Conjugate Diameters. Consider a diameter QCY of
the auxiliary cirele. It bisects all chords of the eircle
perpendicular to it, and these form a system of parallel
chords of the circle. Now turn the cirele, and the system
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of parallel chords along with it, about A4’ till the eircle
projects into the ellipse; the system of chords of the
circle will . project into a eorresponding system of parallel
chords of the cllipse, and the tangents at @ and ', which
are parallel to the chords of the ecirele, will projeet into

w0 Fra 117,

the tangents g@“f’ and 7 on the ellipse, which wi!l be
paralel to flie“Chords of the ellipse. Sinec the middle
points of the thords of the circle lie on the straight line
QCQ, theywiddle points of the chords of the ellipse will
lie on fhé"straight line P’OP. Hence we have (Fig. 117)
(N

THEOREM 3.

¢ \Q«
.g'%"‘ke locus of the widdle points of a system of parallel
~N\hords of am ellipse is o digmeter of the ellipse, and the

tangents to the ellipse at the ends of the digmeter ore
warallel to the chovds bisected by the diameter.

Again, snppose QCQ and R'CR in Fig. 118 to be two
perpendicular diamcters of the anxiliary circle. lach of
these biscets chords parallel to the other; therefore they
project into diameters P’'CP and I'CD of the ellipse, each
of which bisects chords of the cllipse parallel to the other

Ll

such diamesers are called conjngate diameters, and we have
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TuroREM 4.

If chords of an ellipse purallel o o diometer IVCD
are bisected by the diameter P'OP, then chords parallel
lo the diameter P'OP are bisected by the diameter IVCD.

If the angle ACQ =6, then the angle ACR=0+7/2 and
the anele ACR =0— /2, therefore if P is the point 6, °
D will be the point #+4-7/2 and IV the point §—=/2. We.))
nNOW prove O

THEOREM 5. N

If CP and OD ave conjugate semi-d-i-am_etem{\. 0
(P4 012 = CA24 CB: '

AY;
7 4O
O
Q.
T A
N
s A ¥
A\ X ;o o}
O R
D
\\y Q

Frg, 118,

P is the point (wcosd, bsin6) in Fig. 118 and D the
point (—asin g, beos @), because cos{f+7/2)=—sin 0 and
sin(f+wf2)=cosf. 'Therefore

UP2=nf cos?0 +828in%0, OD¥=a?sin?B+ b2 cos?d
and CP24 (DR = a?(cos0 + sin)+ b*(sin®) + cos®6) = a* + B

a4z X
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THEOREM 6.
Af OP, OD ave conjugate semi-diameters wund P A8 the
perpendicular from the centre O om the tangent al P, then
p.0D=abh
Since 0D = /(«2 sinZ0 1 12 cos?f), this theorem is provedil
§135 Ex. 3. - A
- The tangents at the cnds of a pair of conjugate diaineters,
LPOP and DOV, form » parallelogram (Fig. 197, called
the conjugate parallelogram; Thoorem 6 shewi® that the
area of thiy parallelogram is constant, and etpaal to deb.
: \ N
THEOREM 7. v
If UP, CD ave conjugate semi-digapeters, then
_ OD2 = SR AP,
Let P be the point 9; t-hep,tﬁ'lﬁ& :
. SP=a—e(@ of P)=a2eecos 0, SP=autocosd
g0 that SP. S Pyt — o2y c08°0 = ¢ — (2 — b%) cos™d,
and therefore P, SP= 2 sin%0 + 5% cos?d = (%

AN THEOREM 8.

If the seﬁ@\&éametw CP of an ellipse bisect the chord
QY at V, fhém the tungents wt @ and § meet at ¢ pownt T

- on UP wroduced, such that

N\

o\ ¥

\‘;

™

K7 V.cr=0re
-\Ql?ppose the figure (Fig. 119) projected from the corre-
Jpending figure for a circle, and use simall letters o denote

\eorresponding points ou the circle. Then q¢ is perpen-

dicular to Cp, and the tangents at ¢ and ¢ mect on p
produced at £, so that : .
Co.A=0g=Cp? or On: Cp==0Cp : O

But the ratios C: Op and Cp:Ct are not altered by

Projection, since C, v, p, £ lie on the same straight line;
therefore (Fig. 119)

CV:CP=CP:0T or CV.C0T=CP
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THEOREM 9.

If C0, IYCD ave two congugate digmeters of an ellipse
ana V the maddle point of any chord QU pavallel to

O, then V2. P V. VP=0D?: CP

Projecting from: the Cer-cspQﬁdirig figure for a eirele and
uging the same notation as infi‘héorem 8, we have (Fig. 119),
sinee 'Ced and ¢'vgq are pespendicular to 2,

62 Bl =l up O

. A\ .
heeange =, ?,i?g"’a\nd ft = Cp?  But tl}(:’: m-_tws vy - Od,
P Cp oand vp :‘Q?su’ﬁre not altered by projection, hecause
vg and Od arghon parallel lines and ', 2, ¢, p are on the
same straighline ; therefore {Kig. 119) '

) VQRCIE=PV.VP.OF

or (N VO PV.VP=CD*:CF

Siiec F'V. VP —=(C?—(V? we may put the result in
: "‘QI?} form ) OT’T2 Ezz B
™ o opEToDE

and, taking. P'CP, D'CD as oblique awes, CV=2, VQ=y,
P=qa, QD =1, we get the equation

] 2
e N R (1)

which is the equation of the ellipse veferred to two conjugate
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diameters as axes. It is easy to show, by Theorem 8, that
the equation of the tangent at the point (z,, ¥,) is

ZE Y .
Ea.,i.#bn,g.:l. ........................ (2)
Gradients of Conjugate Diameters, I e, ' ave dhe
gradients of the conjugate diametoers £CP, D'CD of the
cllipse w?/a?4+42/b%=1, then )

SN
Y

If P is the point 6, then D is the pofdh 0+ m/2; the
coordinates of P are acos@, bsin 0, ayd Mhose of D are
—aging, beos 6. Hence )

LY f . DEOSON e
_——— = — =7 T = ——
o cos § — g @

Ex. 1. Tf the tangent at P on;a:n";allipse meets the divectrix in Z
prove that the angle PSZ is right angle.
Lot the tangent at 2(a cog By 8in 6) be

L85 647 <in 6 e
_ Seos 6+6sm O=1. iieeirrrriirrennnennns {0

The abscissa of ZJ{ OX or afe; therefore, putting afe for & in (i)
we find for ¥, the ordinate of Z, the value
N\
(e—cos )
ne esn )
Henco i gradient of 87 is
DT oemO (-@a  bemensd)
\,\‘ esing e °F a(l=eBsing'
’}ﬂut the gradient of $P is —-ﬂ-‘g—, and therefore the product of
e(cos f— ey

N\

2 &
«ad

 “the gradients of 87 and 8P is - 1, since #%=a®(1 — %),

See also § 137, Theoren 2.

Ex. 2. The perpendicular from 8, the focus of an ellipse, to 2 chord
of the ellipse, meets the directrix ZX where the dinmeter bisecting
the chord mects it,

Let the diamoeter meet the parallel focal chord QG in V, the curve
I 1 und the dircetrix in 7 Then, by Ex. 1 and Th. 8, 7 is the
perpendicular to @', and therefore to the given chord., ‘This proves
the proposition, o
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Ex. 3. To construet a pair of conjugate diameters of a given ellipse
which shall contain a given angle o, and to find when the angle is a
minirmum,

Using the notation of Example 2, we see that angle 077 is (g_a),

henee T is found by describing on € a segment of a cirele containing
an angle (7,; - a)- C7 is ona of the diameters, the other is the

pet‘penclicul:;r from €' to T8, ¢ \:\
There ave two positions of 7'; when they coincide the angle pimas
minimum and the conjugate diameters are equal. It may be yerified

that thoen tan yo=,/(1-¢%), &N

EXERCIBES XLIL .‘.,:\“
1. Tind the gradient of the diameter eonjugate o y%z‘.'
2. A diameter of the ellipze 2%25 -'}-ygf9=1'i§parallel to the line

2z + Yy —5=0; find the eguation of the conj"u%a.{-e diameter. )
8. TFind the cguation of the line joinifg the centre of the ellipse
522 +3y%2=15 to the middle point of the ¢hord whose equation is
£+ y.r—fl':;
4. TWatablish the identity o8
(SP— CAP 4404 - 8D)=C8Y,
foHowing the usual nr;t-atiqth B

8. T the diameter throtgh a Eoint P on an ellipse bisects the
chord which is normaledt g, prove that the diameter through ¢ bisects
the chord which is 1;})1\’ 1al at P,

-8 PRisa g}_}(}rd of an ellipse normal at P, OZ the perpendicular
from the centas’¢ on the tangent at 2, and €D the selmilrl—zdmmetel‘
conjugate to OB, Prove that PQ:20D=CA . CB: CD*+PZ%

7. 15045 €9 bisect chords parallel to the bisectors of the angles
bet“’e‘k{bh}ie #- and y-axes, prove that the product of the gradients of
OF shh0Q is — bYjal '

I8} Prove that the axes form the only pair of conjugate diameters
abright angles to each other,
\ ) 9. It PP, a dismeter of an ellipse, subtend a 1'i%ht ann;le at the
point £ on the ellipse, prove that the axes are parallel to nE, P,

10. Prove that the diameters of the ellipse #%ja?+y*/b*=1, whose
gradients are bfu, — b/u, are equi-conjugate diameters,

11, TIf a diameter of an ellipse subtends a right angle at the ends of
its conjugate, show that the length of the diameter is determined, and
find the coordinates of its ends referred to the principal diameters
a5 AX0eS,
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12. Bhow how to construct a pair of conjugate diamuters when the
angle hetweon them is given, and prove that when the angle hetween
& pair of conjugate dianieters is a minimum, the inelination of one of
them o the major axis is tan=! (1= e2),

13. If €8, Cb are conjugate semi-diameters and the tangents at
Pand D meet in 7, find the locus of the middie poiut of PB, and gha
the locus of 7.

14. An ellipse passes through the six points {2, 3), (3, 5}‘:(\3, 1,
(0, 33, (1, 2), (2, 1); prove that its canonical equation is £2 "j‘-%}g =B},
Find the eoordinates of the ceutre and the equations of tlie.dinmetors
which bisect chords parallel to the #-and y-axes, \

AN

N
15, If the normal at £ meet. the major and mifer axes at ¢, [
prove that with the usval notation &V

(1) ¥G: ON=PG : Py= BORIE,
(@) Sy:CD=0CS: 0B, A0

16, Find the equation of’ the chord Qf;?he cllipse a¥al +y2H=1,
whese middle point is (zy, 7 N

17. Tind the coordinates of the fidle point of the chord of the
ellipse w*a®+43/32 =1, whose eguation is y =z p.

18. A tangent to the ellipde %%l + #6°=1, whose contre iz
moets the director cirele SEE=a+5 In ¢ and ¢; prove that &4
and €6 are conjugate diamelers of the ellipse.

19. The locus of the Pentres of all ellipses which touch two given
straight lines at gived\phints is & straight line,

20. The nort l\étP to an ellipse meets the line joining the centre
to the corrcqugging point on the auxiliary ecircle in € ; prove that

PY=CD. _ :

2l. The ﬁe}ff’ﬁdicnlar through & to CF meets the direchrix where

tha eon jtgg_zﬁte C ia_met;er of CF mects i, :

Q%I;:\ffove that one pair of conjugate diameters of an ellipse 16
hartonically confugate with reapect to the axes, and that {hese
wAivmeters are equal as well as conj ugate, :

X

\ 3

\ W
) 2

O



OH. XX, §137] .

CHAPTER XX. O

NS ¢

N

GEOMETRICAT, DISCUSSION OF SECANTS, TANGENTS
AND NORMALS OF A CONIC. ,~f~> ’

137. The General Conic. Some properticsiefithe conic are
most simply found by geometry, cspeciallygMhose relsting
to foei, tungents and novmals. The féllewing account of
thewt will serve to make the studews better acquainted
with the curves, before proceeding
perties further by analvsis. o

™|

examine their pro-

»
/

Fig. 120

THEOREM 1.
If a secont PQ of o conic, whose focus 1s 8, meet the
directriz ZX 4n ', then Z'S biscots the angle PiSQ exter-
nally or internally.
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Proof. Let P}, QN (F igs. 120, 121) be perpendiculars
to the directrix ZX; join 8P, 89, 87, and produce S, if
necessary, to #, ' '

Then - ZP_PM_e.PM_SP.

7O QN T ON TR’ A
therefore Z’ cuts the buse P} of triangle PSQ extexngly
(Fig. 121) or internally (Fig, 120) in the same ratig‘as)the

)
\ Nf ¢ N

M\

3

K
(W ¥ig. 121
\\

gides SP, ;S{Q;,sb that Z’S bisects the angle PS¢} externally

or internglly.
o>

~l TaEORENM 2,

O\
~> the tangent at P on o conic, whose focus is S, meet
Sthe divectrin ZX in Z, PZ subtends o right angle at the

Proof. Let the secant PQ in Fig. 121 cut the eurve
again in ¢ and the direcirix in Z ", and let the line PZ
turn about £ till  coincides with P; at this moment
PZ’ takes the position of LZ, the tangent at P. When
Q is all but at P, RSP is all but two right angles, so
that Z'SP, being Lalf of RSP, is all but one right angle
Therefore the angle ZSP is exactly one right angle.



o AN

§137) GENERAL CONIC. TANGENT. 359

EXERCISES XLIIL

1. 8how how to draw the tangent at P on a conie whose focns
and direetrixz ave given, *

2. If P8Q is a foeal chord of a conie, the tangents at P, § meet on
the directriz.

3: Show how to draw tangeutzs to a conic from a point on the
directrix. K¢ M\

4. The focal chord PSQ of a conic mects the directrix in & ¢xdve
that PO is divided intermaliy and externally in the same ratiat S

and A : N
B, Tf.8Z is the semi-latug rectumn, prove that ¢t
2 1 1 O
sL=spt sy

where P, ¢ are the extremitics of any foeal c}wr&‘ J

8. 'S0, PS¢ are two foeal chords qf~x§ conie. Prove that the
othor four lines joining 2, G, P, ¢ mectMiiNpairs in two points on the
directrix which subtend a right angleat the focus.

7. 6 s a fixed focal chord of dhebtic and B is a variable point on
the eonle. R and € meet thedirectrix in U7 and 17; show that
U3 T is a right angle and thag*XL”. ATV= X532

8. PQ is a double ordifiage of & conic, and the line joining P to .,
the foot of the dircetrixfehts the curve in . Show that /'@ passes
through the focus. , ,{ )

9. P8Q, a foca) }h\ord of a conie, meets the directrix in ; prove
that (PQSA is o Barmonie range. .

10. A focpl ¥Hord 2284 of a conic meets the directrix in &'; prove
2 N1 - ;
that .2 23w o are steps the P-line.
19 % '{}'-’_SQ’ where SP, 8@, SK are steps on the ¢

1L.THe segments of any foeal chord of a conje subtend equal
angles &t the foot of the directrix.

\12 P8g. a focal chord of a conie, meefs the direetrix in K, the
sAugent ut P ieets the directrix in Z and the perpendicular throngh

@ to PG meets tho tangent at £ in T'; prove that Z(PQSK) is a
hamlon_ic pencil and that the directriz bisects oT.

13. The Iatus rectum cuts the fangents at the extremities of any
foea] ehord in & and A7 ; prove thut SH=8H"

14. If the projections of A, any peint on = tangent to 2 conie, on
the direetriz and the foeal radius o? the point of contact be Jand U
respectively, prove that SU=e. A7, (Adams’s Property.)

4G, N3
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15. Use Adamss Property to construct the tungents Lo a coni
from an external point, und to show that ihe tangents subtond el
angles at the focus. .

18, The tangent -1L L, the extremity of the latus rockuw of a coliic,
meets the ovdinate ¥ of 2 point £ in ¢ ; prove that Vg=5/

17. Given the focus of a conic, a tangout and its poiut of contgoh,
and another point on the curve, show how to construct the vensx
and the directrix. O\

18, The fangent at P to a conic meets the directrix i hafd Ll
axis through S'in 7'; prove thut S touches the cirole B

19. ¥f ¥ is the foot of the perpendicular from S8 0¥the tangent
ab I, prove that §¥7: VX =8P : ¥, where ¥ is she yprojeetion of P
on the directrix. : PR\Y

138. Notation and Definitions. The) following notation
will be used unless the contrary iSo\ézﬁjreHs]y suted.
S, 8" are the focl of a conie, ZXNind Z X’ the correspond-

- ing directrices; X and X’ ave €)' foet of these directrices:

A and A4’ are the correspafding vertices. 7, I are the
extremities of the latus retbtm. '
The ecircle on 44" g8 \diameter is called the auxiliary
eircle, .
C is the eentre of the conie ; O and X P are the abscissa
and ordinate ofa'point P on the curve, F'M the perpen-

~dicnlar from 401 the directrix Z.X.

7 &

Y, V" argxthe feet, of the perpendiculars from S, & on the
tangent af, 82 '
The chorinal at P is the perpendicular at P to the
tangeibat P .
Lhe tangent and normel at P meel the transverse agis
Rothe couie in 7' and G vespectively ; N7 is called the

shbtangent and NG the subaormal at the point P

139. The Parabola.

THEOREM 3.

If the tangent amd mormal at P on o parabola %
drawn, then :

(1} eSPT= . MPT, (2) SP=ST, (3) SP=S%
4) TA=AN, (5) NG=248
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Proof.  Let the tangent at P meet the dircetrix in Z
(Kig. 122). .

(1) Angle ZSP is a right a,ngT_e, by Theorem 2, so that
triangles Z5P, ZHP are cougruent, and . SPT= . MPT.

(2) By (1), LSPT= o MPT.
But L MPT= 87D, A
thevefore L SPT=vS8TP and SP=ST. LD
M
2 ,'\.
x\‘
T X A
\\\.'

N " Fi. 122,
(3) By (3)\)§ is e centre of ihe semi-circle which
contains therright angle TPG; t,he_re.fore SP=56G,
WNO ra =154 =3P -S4 =PM—S4.
?B;h't\ PH=NX 84=AX, o that Td=4KN.
O3) NG =SG—SN=SP—SN¥=XN—-SN=245,
) : :

THEOREM 4.

The loous of Y, the foot of the -pe-rf;pe-nd*ic-zr,-ifa-r from
the forus on the tamgent at P, 1z the tanyent at the verter.

_P roaf.  Join SM (Fig. 123); then SPM is an isosceles
triangle and P7 biscets the vertical angle, by Theorem 3.
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Therefore P7 ceuts SM at right angles, so that the
intersection of SM and PT is ¥, the foot of the perpen-
dicular from § to PT.

Now ¥, A bhisect SM, $X ; therefore 4 Y, being perpen-
dieular to A48, is the tangent at the vertex, and the logus
of Y.

p. N 3
L\

" PO

4 o\ﬁ\) Fie. 123,
Cor.1. 8 ?\blsect-s the angle 79P,
Uor. 2. /oy me+ a/m is the tangent of gradient mn to the
parabolang? = daz.
D THEOREM 5.

x\
~N\ SY?=A8. SP.
A\“Proof. - In triangles ASY, YSP (Fig. 123),
~O LSAY=:8VP and L ARY = . F8P;

/. therefore the triangles are similar, and
AS:8V=8Y:8P or SV2=48.8P.
THEOREM 6,

If tangents at P and P’ meet w0, 0P and O’ S“bfmcz
equal angles at the focus, the triangles OSP and OSP art
simitor, and SO2=8pP_SpP'



§139] PARABOLA. TANGENT THEGREMS, 363

Proof. Let OP, OF (Fig. 124) meet the tangent at the
verbex in ¥, V*; join S¥, 87, 80.

Then, by Theorem 4, angles SY0, 8Y'0 are right angles,
so that the fonr points 0, ¥, 8, ¥’ He on a circle, ......... (1)

Also, as In Theorem 5,

tSPY=.8YA=c80¥, by (1), |
and tSPY' =8V A=:807, by () \\“\

\\ ” Fie. 124,

’l‘hercfore,'ta'he‘ angles 8P0, SOP of tria.nvglre OSP are
equal to tl@yihgles SOP, SPO of triangle OSI”,
Hened?eUSP = . OSP, that is, OF and OF subtend
equal\fﬁiﬁﬂes at the focus. o
Albo;  the triangles OSP, OSF are similar,
aud B02=8P.SP.
' EXERCISES XLIV._
1. Prove that 87H7T is a rhombus.
2. Trove that every point on 27T is equidistant from S and A
3. Giiven the focus and directrix and a point 0 on PT, show how
to find P ; and then give & construction for drawing the tangents

from a given point O te a parabola whose focus and directriz are
given. .
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‘4. Uiven the tangenl PP and £ its Point of centict, piven alse
the foems, draw the directiix. .

3. Given the tangent 77 but uot £ tls poiit of coubaet, given
also some point @ on the cnrve, and the focus, show Tiow to find the
directrix and the poing 2.

8. Given the tangent PZ but not I* Lhe point of vantact, gigl

also the axis and the Foeus, show how to find the directriz and“he
. N ¢

) 2\
7. Tangents ut the extremities of a foeal chord of aparabols
interssct ab right angles on the directrix. ™

8. The cirele on a foral chord of a parabola as dHauigter touches
the dicectrix, 7

K7, .
9. Tangents at the extronties (, 6 of o fcucaT‘:;hcn-d of u parabola
mest al Z, and the parallel through Z to the dals¥ineets the curve at
£ prove that, Q(/=48p, A
10, The locus of the middle puints of Qoa} chords of a parabola isa
parabola. .

S J

11, If {=5SE, tho semi-latus I‘ectlflgg; and SP=yp, prove that PG iz
squal to 20 o

12 TP P7, PG and PP Paihe the tangents and normals at P, F/,
two points on a parabola, Atd if the difference of the SOUATES 0N
P and P67 s constant, Prove that 77° is constant,

18. 1f I=SZ, the sepi-Ihtus rectuui, and SP=s, prove thal
¢ & i:‘ SZ=7IN I8 = 1)
14, Prove t.-hat\&\-ﬁe leugth of the perpsndicular from the foeus on
to the tangent'M the end of the latus rectum is A8, /2.
15. Prpy&”ﬂ!ﬁt XL s the tangent at L, the end of the latus-rectun.

16. Gﬁ(cu the foeus and directrix of « parabola, draw the tangent
parallel %6 a given line.

Ve NTE P s the point- (9, 6) on- the parubola yi=4dy, calenlate /7'
Jud T,

(N 18 If mis the gradiout of P referred to AS and A ¥ as axes of #

N\./

O

and ¥, prove that 4 ¥ - afmn and AT=afm?, _

19. Prove that y—aft+ar is the tangent to the parabola w=af,
¥=2at at the point 'z, .

What is the geometrieal significance of the quantity 4 ?

) 20. Tt ¥ is a variablo point on the line dx—3y+1=0 and § is t.h'e
fixed point (1, 1), and if ¥P is drawn perpendicular to §F, prove
that ¥'P envelops {that is, is a variahlo tangent to) the curve

95+ 245y + 1652 — 122 + 104y =31.
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2l. ¥is the middle point of @€/, a focal chord of a parabola; and
the tangsuts at & and & meet in 0. Tf the tangent parallel to QfF
meet Whe curve in P and 04, 0 in &, £, prove that the five points
G, &t I8, Flie on a eirele, centre £

22. The external angle between the tangents OF, OF' is half the
angle hetween S and 8P

op: 8p

23. The tangents at P and 1 moet in O; prov AL
pgonts at £ an meet in O prove that TR

24, 77, T¢ are tangents from a point 7' to a parabols, and 7S¢k
produced to 7V so that FI§=~87"; prove that the triangles P'SP, °
A8t ave similar >

25. It 7'G, T¢ be tangonts from 7' to a parabiola, the bisector of
the angle G7¢ is equally inclined Lo S7 and the axis. I,

28, The lanzents to a parabola at 2 and Q inters'é‘a} in 7'; the
cireles circumserihing the triangles SP7, 87 mdehthe axis again
in A and A, Prove that P and 7K are pam.llel\ N

7. I 1P, TP are tuangents to a parabols o‘ﬁ-‘ﬂ;\se focus i 5, show
that the iangents at the points where «Sfnts the parabola ave
parvallel to the biseelors of the angle PTENN

28, Two parabolas whose foei are § and 5" have a common direetuix ;
prove that the bisectors of the anglesdunied by S5 and the direetrix
are connuon tangents to the p;u‘a.}}q]a.s. ’

23. The tangents at the extzBmities of a focal chord of a parabela
meet in 7' and the normalsedn 75 prove that TF is parallel to the
axis, & .

30. The loeny of infelggution of the normals at the extremities of
foeal chord of a pa.mb({}x is a parabola.

8l. Show that €he angle between any two tangents is ccos(ryiry),
whern », r, age{fhe respective distances of their point of intersection
from the dire¢By¥ and foens,
ele passing through the poinis of intersection of three
L (toa parabola also passes through the focus.

33:s'}f Tis a point on the Iatus veetum of a pardbela, the tangents
fromy7 to the parabols are two of the bisectors of the angles between
#h¢Mlatns rectum and the tangents drawn from 7' to the circle
Hetserihed on the latus rectum as diameter.

34. Given two fangonts to a parabola and the focus, determine the
vertex and the directrix.

85, The tanwents OFP, OF are eut by a third tangent in @
respectively ; prove that 0Q/QF=P'¢/¢0.

86. 1f the normal PG be produced to meet the curve again in €,
and P subtend a right angle at the focus, prove that the ordinate
of s equal to the latus rectuu, -
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37. If a parabola touches three sides of a iriangle, its directrix
passes through the orthocentre.

38. Frove the following construetion for finding on a parahols 3
point £ such that the portion of the tangent at f* jutercepted hetwoen
tho directrix and the tangent at the vertes is of given length 7,
With centre S and radivs £ deseribe a circle cutting the tangent.at
the vertex in B. With centre § and radins 45 deseribe o ‘cibeld
cutting the tangent at the vertex in €. Draw €9 perpendigylar™to
A2 and et it touch the parabola at & Tind a third propéemtousl,
£, 0 830 and A48, Then #is the abscissa of bhe required poiht 2.

N

39. A cirele whose contre is on the axis of a paralipla touches the
- parabola ; prove that the tungent to the circle from Suypoint on the

parabola js equal to the perpendicular let fall irgin the poins to
the chord of contact. 2\ :

40. Given three tangents to a parabola, atd\l6 point of contact of
one of them ; determine the focus and dirqct{ix.

4l. P is u variable point on a fixed 'Hn} and 4 i3 a fixed point;
prove that the perpendicular throagh NP to £4 envelops a fized
parabola. P\

42. Prove that the line joinjtg .the projections of a point on a
parabola on the axis and tangent at the vertex envelops.a fixed
parabbla, AN

43. Prove that the paratial through &, the foot of the normal at a
point P on u parabola,yortex A, to AP touches the fixed parabels
whose focus is the poingy —2m, 0) and whose tangeut at the vertex is
#=2u, where the ag:eg.\of @ and ¥ are the axis and the langent at the
vertex of the gi okt parabola.

44. The point P is the foot of the perpendicular from the verfes ou
a variable tafgent, gradient m, of the parabola %= der ; show that
) .:\ ) F=—ai(l+m?), y=aim(l+m?) _
arc freedom-cquations of tho locus of £ Find the constraint-equation,
and brdoe the locus from either of theso equations. The locus is the
pg‘{{ludf the parabola with respect to its vertex.

3% 140, Central Cosics, The following are {he important
' properties of the tangent and normal to a central conic

ellipse or hyperbola. The proofs refer to the ellipse, bub
they apply with certain obvious changes to the hyperhola.

THEOREM 7.

The foeal distamces SP, P are equally inclined to the
tangent and normal ot P, and

(1) S¢=¢.8P, (2) §G=c. 8P, (3) Of=¢.C.
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Proof. Let the tangent at P (Fig. 125) meet the
directrix in Z; join 8Z, SM. *® -

From Theorem 2, § 187, it follows that S, P, M, Z lie
on a circle whose diameter is PZ; PG is the tangent at
P to this circle.

Hence in triangles SP&, SPM,

L SPG=rSMP and G8P=.8PM.

WFi 1.
Therefore the trianglcs; SPG, SPM are similar, and
(S6:SP=8P:PM=e;
so that  SG =P ; and similarly 8G=e. 8P,
Also, by (13.8nd (2), SG:SG=8P:5P,
30 that the\ormal PG is equally inclined to SP, 8P
Sinee>{Mc tangent is perpendicular to the normal, it
alsoi€ aqually inclined to 8P, 8'P.
Liin, (G =08—G8=¢.0A—c.8P
™ =62(GX‘—.PM)= 8‘2 . C‘AT_
THEOREM 8.
The locus of the fect of the perpendiculars from the J oct
on o variable tangent is the augiliary errele.

Proof. Let §P (Fig. 116) meet SY in H. Then, since
PY bisects the angle SPH, by Theorem 7,

SP=PH and SY=VH

)
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Therefore S H=8P+PH— SPLSP=AA"
so that OY=18H=04.

Heneo the Iocus of ¥ iy the cii'ci.le} centre O, rading (4,
that is, the auxiliary circle.

Note. CY is parallel to §'P and OV ig parallel to SEON .

KoY
. Tieonrzy 9. e\
SY. 8V =cRe ~\*

Lrogf. Let ¥'S" mect the auxiliary ci¥die’ again in Z
(Fig. 116). Since ¥YV'Z is a right angle, 852 15 o diameter,
and therefore passes through G v

Triangles OSY and 087 are eongruent, so that S¥=8'Z

Therefore Y. & V=25, SY&ds. s4

=(CAE8N 04 -5y = 02,
_ T[fﬂiii)'REM 10, i

(1} If tangents at » pownts P oand P on an etlipse
meet v O, OL aprh QP subtend equal ungles @l eilher
Joeus, and are equedly inclined to O und O, ench 1o each

- A2) If tan, ’Msar‘ the points P and P on o feyperbolo
meet wn (), ML and O sublend equal or supplementury
angles at mither foeus, wecording us P and [ are oi the
same braith or on opposite branches of the hyperbola;
also O?l'r’in-cﬁ OF uve inelined at equal or supplementary
angles o O8N and OF', eaeh to ek, aceomling as P and
\EC on opposite bramches or on tHe same branch of the

shaperbola,

~O Proof. Produce SY, 87" in Pig. 126 to mest g, 8P
) in H, _ﬂ"; Join GH. OfF. '

Them, as in Theorem 8§,
_ SP=H1P and SH=A4"
Hengee, in triangles 8PO and HPO,
SP<=HP, 0P-0p t8PG= L HPO,
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because £U, the tangent at P, is equally inclined to PS
and 85 therefore : :

LOSP= 0P, LPOS=.POH,

and O8=0H.
Similarly, cO8 P’ = OH'P’, L P'OS =L P'OH,
and - O8'=0H". O\
Now, in triangles O8'H and 0H'S, o 7
OH=08, OS'=0H, SH=AA=HS; \.~
therefore 2 S'0H = £ 08, so that SOH =0 8OH
s \:..\\\’

PR D Fig. 126,
"</
But it, )&Qg.’s}lown that - POS= POH
and \;\, L POS =L POH”
theréfon'e . L POS=LPO8,

21 0P, OF are equally inclined to 08, 08" , -
N/ Also, from the congruency of triangles U8 H, GH'S,

LOHS = OSH',
and # was proved that
LO8SP=L0HP;
therefore L O8P= L O8F;
that is, OP and OF subtend equal angles at the focus.



N\

. J
N\

\:

™

370 ANALVTICAL GROMETRY, [eR. xx.

The Asymptotes ag Tangents. Since the asynptotes ape
tangents, Theorems 8 and 9 show that the foet of the
perpendieulars from the foci on the asymptoles le on the
-auxiliary eirele, and that the length of each perpendieular
is the sewmi-conjugate axis B,

It the tangent at P on a hyperbola meet the asymplbies
in 7and 7", as in Fig. 127, and SK, SK* are parallelato the
asymptotes CF, C'", then ST bisects the angle P,S{{  sO)that

\”’: Fic, 197,

‘T is equidistant from SP and SK. But the perpendicular

from 7' to SK is equal to the perpendicular from & to 07,
which, as remarked above, is equal to OB Heneg the
perpendicular from 7T to SP i equal to '8, Similarly,
the perpendicular from 7” to 8P, being equal to the perpen-
dicular from 7" to SK” ig equal to OB, Hence 7 and 1" are
equidistant from SP, so that P bisects 77" (sec Th. 6,
p- 336). _

Further, CP bisects chords parallel to 77" (§132), so thab
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if O} is conjugate in direction to P, CD is parallel to 17",
Hence (§45) C(LDII7) is u harmonic peneil, or the asymp-
totes are harmonically conjugate with respect to CP, OD.

Ii the hyperbola is rectangular, ZPC is an isosceles
triangle, so that the conjugate directions OP, €D are equally
inclined to each of the asymptotes.

141. Worked Examples. We shall now work some ey,
amples of the application of the above Theorems, ™
Ex 1. 8P, 50 are foeal radii of a conic which are pa,ra,‘l]glsaind in

the sanie divection ; prove that the tangents at P and ¢ aneet on the
auxiliary circle. s

~0 Fia. 198,
DQW" T (Fig, 128) parallel to SP or 5'Q and in the same direction
toumeet the auxiliary circle in 72 Then the tangents at P and § pass
SHiroagh 7, according to Theorem 8, Cor.

Ex. 2. 1If the normal at P on a rectangular hyperbola meet the
transverse axis in &, then 0= FG. . .

Draw the tangent at P as in Fig. 127 to meet the asymptotes in
Tand 77 ; draw €D parallel to PT. . )

Pig the middle pOiDt of the hypotenuse of trla.ngle e K therefore
LPOT=y PTO=1 TCD.

Heueo O bisects both L PCD and L GOB, so that L PCG =1 BCD,

Now PG, G are perpendicular to 0D, OB ; therefore £ PGC=L BCD.

Hence L P0G =2 PGC and OP=PG.
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- Hx, 3. PNQ s A focal chord of a conic: the normals at P, §
inberacet T (and the tangents in Z; prove that 02 passes throngh &

The fonr points Z, £, 0, ¢ In Fig 120 le on 4 civele, £ lies on the
divectriz and Z8 is perpendicular to P@.

Fre. 189

Hence L GZS- complement of & Z'QS = OQFP = OZF,
Thorefore ZO and Z8 make eqlial angles with the tangents ZF and
Zg), so that Z0 passos through8% Ly Theorem 16.

EXERCISES XLV.

1, 1f the parallehbhrough € to the tangent at 7' meet 57, 81" ab
E, F, prove thug {E% PE =4

2. Given bhe\bcue', divectrix and a tangent of a conie. show low
to determing itsecntie, :
. 7 3 . . ‘. - 1" R

3. 1fARNE a point ou an ellipse, whose foul are § and 5, prove

that thednseentre of the triangle SPS divides the novrual /6 in the
vatipel &, where e is the eccentricily. :
LE T and T are tungents to a conie, the bisectors of angles

w‘ﬁ)’hﬂ’ and 378 coineide, _
:“\"" G. Eand Fave points on a tangent to a conle, whose foeus Is 5
PN\ such that £SF s aTight angle. The other tangents from £ and F
\ 4 to the conie meet it at £ and @ ; prove that g is a focal chord.

6. Prove that the external angle between two tangents to ab

ellipse iz half the sum of tlie angies subtonded at the focl by the cliord
of contact,

. 7. PFrom s mavable point Z on e divectrix of u conie,a tangent
is dvawn which wneets the major axis in 7. Show that the locus ©
the intersection of the other tangents from Z and 7' to the conic i3
straight line perpendicular to the major axis.
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8. Pel'pen([if:ula.fs SY, 8% are drawn frow the focus S of an
ellipze to two tangents 72°, 7§ wmeeting them in ¥ and Z.  Prove
that ¥Z s at vight angles to 8 7.

9. If F is ihe foot of the perpendicular from & to the tangent
at P, prove that S¥: FX==80 5P,

10, If thoe tangent and normsl at a point P on an ellipse meet the
major axis at ¥'and €, prove that 0F. 0T=08%

11, A is a fized point ; Fis a variable point on a fixed eircle; .RQ\
is drawn peependicalar to 4 prove that P@ envelops a conic mhiche
it a hyporbola or an ellipse, according as A lies outside or ingidethe

eirele. N

12, A wariable eircle is Arawn through a fixed point &oNak to have
the same vadius ag a fixed circle; prove that the coinitn chord of
the fized and variable cireles onvelops a conie whigh is a hyperbela
or an ollipse, aceording as the Hxed point lies oubside or inside the
fixed cirele. . x.\\:

13. Ii the tangont at £ meet the dir'ectlji)&ifr T, and [=8L, r=38P,
¢==eccentricity, prove that A

ST =l il -1—e.g}ide r~D}

14, If 7=8L upd SP=r, prove that '

PG = Q- (1 -9

15, If P80, PS¢ are p“a,rzlll_ei foeal ¢hords of an ellipse, prove that
the intersections of the temgents at P, 7, @, ¢ lieona directrix or on
the auxiliary eircle. = \

18. P is auy polubon an ellipse, PSQ is a foeal chord and DOP" I8
A diameter ;. proye that the tangents to the ellipse at @ and 1 meet
on the suxiliaygcibele. :

17, 7 iagh }rcfint on the auxiliary cirels of an ellipse, F'P and T
ate the tyngents from 7 to the cllipse ; prove that the focal distances
of ' a,rz'e'\a.,b'r'ight angles to TP and 7¢. .

18\The fine through 0, the interscction of the 1101'1;1&13 at the
qxtremitics of a focal chord 74, paraliel to 8, bisects P

NM9, T 0 is the interscction of the normals PG, }: ’G_’ at ilﬁe
extremities of a foeal chord P2 and OF Parallel to £ meets the
axis in }, then # is the middle point of GG" :

20. If 0, Z are the interscetions of the normals and tangents at the
extremitics of a focal chord PSP, and if J_D: F are the prejections of
0, Zon PP respectively, prove that £7= M. .

21, Tf O, Z are the intersections of the normals and tangents &
the extremities of u focal cherd P’SI7, prove that the l}me joining O to
the orthocentre of the triangle ZPP' is parallet to A4
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. 22. If M is the projection of P on the directrix of an ellipse, prove
that the logus of the intersection of SM and P is the line 224,

23, The normal at P to an ellipse meets the major axis in ¢ and
the minor axis in g ; prove that PPy is constant, and thal- Sg s a
mean proportional between Fy and .

24. The circle through the foei and any point ou ar ellipse passé
through the intersections of the minor axis with the taugent 3nd
aormal at the poing, O\

25, If the normal at P meet the minor axis in g, andra\be’the
Projection of 2° on the minor axis, prove that Co/Cn—=CS/8X

26. The tangent at 7, 3 point on an ellipse, meets théminor axis
in ¢, and the projection of P on the minor axis i3'w'; prove that
Cn. Ot= OB \

27. The normal PG meets (F, the parallel b0 tangent at P, in
F; prove that PG.PF=(CB. If P meet\s ywhe minor axis in g,
prove that Py, PF= (4% INY

28. Prove that the -projection of Péon SP or P is equal to
the semi-latns rectum. ANV

/N

29. Find an expression for thevsubnormal of 2 central conic in
terms of the central abseissa, 2ud deduce the eorresponding theorem
for the parabola. ™|

30. Express the subtangént of an ellipse in terms of the central
abscissa ; and deduce that, for a paraboia, the subtangonb is twice the
" abscissa measured fromybhe vertex.

3L, A circle hag &% Scentre on the major axisz of an ellipsg and
touches the ellipde st & and £ ; show that, if P is 2 vaviable point on
the allipye, t}lemth of the tangont from # to the circle hears a
comatant ratig folthe perpendicular from P to OR,

32. Tappents are drawn to an ellipge from any point 7' on the
auxiliar: circle. Show that the perpendicular drawn through one of
the foel, & to ST is paralle! to ong of the tangents and meets the other
on adixed straight line which is at right angles to the axis and cuts it
bk, Wwhere CH? - SK:= (42,

~0%83. P@ is the normal to a conio at P, and L is the projection of @

WLYon 8P the line 6N is drawn parallel to S°P to mect the iangent

\ 3 at Pin ¥ and LR and $'Z are drawn perpendicular to the tangent
at £’ Prove that PN{PR=8"P25 72 :

34, PG ix the normal ab a point 2 of an ellipse. If BCA is the

minor axis and #Q the ordinate of u point §, such that BM=CF
Prove that AG, 4'G are equal to the focal distunces of &

35. The four focal radii drawn to any two points of an ellipse have
one cemmon tangential cirele whose centre is the intersection of the
tangents at the extremities of the radii,
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36. An ellipse rolls’ on an equal ellipse. If extremities of the
major axea are initially in contact, find the locus of cither focus of
the rolling ellipse.

37, A variable ellipse touches n fixed ellipse and has a common
focus with it; find the locus of its other focus when its major axis is
given.

38, Given one asympiote of a rectangular hyperbola and two
points on the curve, fiud the centre. , {\

39. Prove that the intersections of the directrices and the auxitiary *
circle of a hyperbola lic on one or other of the asymptotes. W/

40, If the parallel to an asymptote of a hyperbola th@ifgﬂ the
oint # on the eurve meet the directrices in & and 3 jwove that
M and Y7 are equal to the focal distances of P

7
N
N
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CHAPTER XXI. )
AN

ANALYZIICAL DISCUSSION OF SECANTS, TANGENTS
AXD NORMATS TO CONICS., )

142. The Parabola. Let, R4 .
' yr=dan ... \ P 4y
and . ' w=af, y=20........... (2)
be the constraini- and freedom-egmations of s parabola.
Then Y=y —yDE Y —das oo 3)

: ™ L
i3 the equation of the secafbiwhich cuts the curve at the
points (@, 47,), (i, ¥,). For'(3) reduces to a linear equation

m g, i and'is satisfied Ly =a, Y=y, and by =, ¥ =y,
Put y,=y, and fyf{: 4wy in (3); Lhen, alter veduction,
, \"‘}\ Yh=20(+2); (4)

this is tha equa\,ﬁbﬁ of the tangent at the point (x;, 7,
If @) = o3y = 2at, then (4) becomes
¢/

AN . 'y:i;—l-at, ........................... (5)
LN\ .
w}){{hds the eqnation of the tangent at the point +.

1 =L (5) becomes . ®
:‘,\;,; T \9) hetomes y=mg +1_n’ ........................
) which gives the equation of the tangent of gradient m. It
follows that ¥ =sne 4+ 0 is a tangent to (1) if e =a/m.

We also see that £=cot 8 where § is the angle between
the axis and the tangent at the point ¢, so that the
freedom-equations of a parabola may be written

r=acot*d, y=2acobO ..........c0urn.. (7)
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The normal at the point t is, from (5),
(y —2at)+t{e—at)=0

or _ Ytte=2al+at’ ... (8)
If t= —m, (8) beeomes
y=ma—2am—am?, ... (9}: A

whicli 15 the equation of the normal whose gradient is m. \.
Equation (3) may be written as a quadratic in ¢, fhaig"

aff—ty+ax=0; ....... \x(l[})

if &, ¢ are rogarded as known there are twaulucs of £ to
correspond ; these values give the pointg)of contact of
tangents to the curve from the known it {2, 4).
Equation (8) may be writlen as a’¢itbic in £, thus:

TG T o 2 RPN (11)

showing thal three normalyscen be drawn to the "curve
from a knewn point (w, Wy the feet of the normals are
given by the roots of the“cubic. One root of the cubic
must be real, so that &ne real normal ean be drawn II'O'[TI
any point to the, erve, If the three roots of the cubic
{11} are real, thenfihy § 106, .
~":“' (Q(L_x):i B y_?‘:
O\ 4’T+27az{0
or > = NP 12y -
e e S Me—2aP
WJ'R\]\I ayt=4(w—2u), two of the mnormals are
coiveident. When the feet of two of the norwals from a
Point €' coincide at P, ¢ is called the centre of curvature,
the eircle, with centre ¢ and radius P, is called the circle
of eurvature, and CP is called the radius of curvature at P.
The loeus of the eentre of curvature is called the evolute
of the original ewrve. The cirele of eurvature meefs the
eurve at three coineident points, and t-herefqre lies as closte
t0 the curve at the point as a circle can lie, The centre
of curvature is often. spoken of as the intersection of con-
secutive normals,



)

\“where the straight Tine F+A=0 cuts it are u
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EXERCISES XLVL

1, Prove that the equation of the chord of the parabola ¥=daz,
whose extremities are the points ¢ and £, wmay be written as _
(4 1)y — 2= Qait 8,
2. If the chord of the parabols r=ath y=2af whose extreniitios are
the points # and ¢, is the normal ag the peint f,, prove that N\
2 N
31+52=‘—?l- ) ’.\"\
Hence show that the other extremity of the normal at ths point 2
is the point —z— 24, Ao -

3. Prove that the tangents at the points ¢, ¢, iftorsect at the
point whose coordinates are ¢* 0
{onty, alt+a)l, NN
and the normals at the point

te(ti+ ot 427 +2), — 0’*51?3%% 1)}

4. If the feet of two of the threo nonk als from: a point € to the
parabola = 4ax coincide at the point z,(g:’%ve that the ecordinates of
the point ¢ are {324 2), _Z Ger3, _

Find the radius of curvatupe abthe point 4 and the cquation of
the evolute, RN

5. If the normal at £(ai2(9ar) to the parabola y?= der meets the
patabola again in , and AJgthe vertex, prove that the area of the
triangle 4GP is L2124 )¢,

6. If the normal 4 = 2t 4 to the parabaola _y =4ax subtend
i r1gh_t angle at thesvertex, determine tha value of £

7. Find thewaltes of m so that y=mz+aim may be a langent tc
the two parabelady® =das and ¥r=4b{z+c).

8. Chord§/af the patabola a2=dar are drawn to touch the
parabola 38=4%x ; show that the locus of the intersection of tungents
af their txbremities iz the parahola b= 4oy,

9§\If the straight line 4 =mat ¢ touches the parabola p?=da(z+a)
proxe’ that c=a(m +a). ’ .

{710, Show that the tangents to the circle 42+y2=g? at the points
f:;o langents fo the
Parabels 32=44(r 4 ).
11. Show that if the nornwl at P 6o a parabola meets the curve
again at @, and O iy the widdle point of PG, the product of the
ordinates of P and 7 ix constant,

12. Tf the normal at the point P on a parabola cut the axis in G,
the longth of the chord drawn throngh ¢ parallel to the tangent ab
£ 18 equal to 4,/2. 8P, o :

*
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13. Show that the tangent to the parabola Y=dazx at the point

where the normal parallel to y+me=0 meets the curve again is
(24wt mte a{24+mHE=0,

14, From a fixed point P on the parabola y2=dax, chords P, rg
are drawn making oqual angles ¢ with the tangent at . Show that
¢ will for all values of ¢ pass through the same point £ Prove
further that if 7 moves along the parabola, the locus of & is

(x+2a)y2+4a°=0. ' £

15. Wrilo down the coordinates of any point upon the parahola

¥ +4k(y —x)=0 in terms of a single paramater. \.

N

18. If the tangents at two points of & parabola meet at &) and
the normals at (£, %), then an +xy =0, where 4 is the Intu@meetum,

17. Prove that the parabola yi=4ax may be defmed ‘a\;;'the locus of
a point £ such that G P2 is propertional to PH . PV iwhere 0 is g fixed
point: on the parabola and PY, PN are the perpenditulars from P on
two fixed straight lines, one of which is the tangent’to the parabola at
O and the other & tangent to the parabola g =<dn(s + 4a).

18. Find the cquation of the normal to ﬁle xpa,ra.'bola. yt=4az, which
nakes an angle § with the axie of 2. From any point in this normal
fwo other normals are drawn to the Burve. Prove that the straight
line joining their feet is parallel tod Hxed straight line,

19. Tind the equations of bhé:t'wo real common tangents to the
Curvoes xg ?}% o .
;_;ﬁ-}“'z’:g':] a.nd ¥ =2z

20, Two normals to ﬂ parubola are at right angles and meet the
axis in & and 6" ; shéwthat the semi-latus rectum is a harmonic mean
betwean the dist&ne@s of & and & from the focus.

2L P G, £,(8 %re the vertices in order of a var:iablle rectangle.
P and R lis@n the saxis, @ on the y-axis, and P is fixed. TProve
(1) that thé\ptus of § is # parabola, (2) that @R touches a second
Parabolag(@ythat 12 is normal to a third parabola.

22Frove that the locus of points at which a parabola subpends‘a
glyenangle (7 —o) is a hyperbola with the same focus and directrix
Andin eceentricity sec o
\ 23, Show that the line y—=mam(c—2a)-am® is a normal to the
‘Parabola y?=da(x o). Pf'fove that, if @530 and 6> 3(a-b), thle
two parabolas y2=4n(x+¢), y°=4bx have & pair of common normals
inclined to tht common axis, and that the distance d befween the
“Urves meusnred along one of these eommon normals is given by
d2=4{a—)e—at+h).
24, The aven of the triangle formed by the three té‘ﬂgents: drawn
a6 the points (w, 7,), (44, 75), (i, ¥g) 00 the parabola y?=daz is

(& "?/z)(.’?s—.?”s)@’s'yl)/lea*

\5
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25. Trove that perpendicnlar normal chords of a parabola divide
pne another in the ratio 3 : 1.

26, From g peint 77 on the latus rectnm of a paraliola two Langents
are drawn to the carve, and the correspondivg normals intersect in (7,

Show that the middle point of 7' lies on the axia of the parabola.

27, Show that the locus of the inbersection of the normals at i
ends of u system of parallel chords of a parabola is a straight lwe
which is a normal to the curve, ' AN

28, Find the condition that the line Le--my+2=0 nm};\:t}jueﬁ the
parabola of which the foeus is at the origin and the gertex at, the,
point {z, 0).  Show that if the two parabolas NG

: wt=4alz—7F) and »2=4b(y —'&«}\V
touch one another, thon ' \¥;
(fy — 9aby =4(77% 3bg ) g Pon/)

29. If normals PO, @0 to a parabola igj:-e}ﬂor:t at vight. angles in @,
the third normal R€ threngh the pojnd@Ms cut by the axis 1 a polnt
¢, such that 30G=04. ) N\

30. The pormala at two pc»i;lts:’,f and ¢ on the paralcla 3_= Lot
interscet on o tized diameter g=%; prove shat the tungents al and
) to the parabola iute;.‘set';t;‘ afnghe hyperbola wy4-ak =0

31. The normal at P50 i)al_‘sl,bnla. meets the curve again in €, and
the tangents at P andyncct in 70 Show thal the miniranm value af
the aves of the triagtg)e T'6) s twice the square on the latus rectun.

32, If twa u?s@nals, of the parabols 3% =4ex make complemenliry
angles with the axis, show that their point of interseciion les on one
of the curyesNg® = a{s—a), y¥=wly -3

\X - .

33. Thdnormal at £ to the parabola »2=dar mests the axis in R
:l.nr_l'bbé‘]':la,rabola again in @3 the normal at @ tneets the axs It
ROAine RS cqual to R s drawn through 72 perpendicular to the
\ts"; show that the locus of ¥ iz

34, Tangents are drawn to the parabola y?—d4en from the point
(', ¥y ; show that the eorresponding normals intersect in the point
(Qa, --x'+y.“, —'ﬂl).
. e %
35, _A' parahols, whose axie is along the axiz of @ intersectd L}I“‘
a_-31].i e {cglm,? + 245 =1 arthogonally at ihe potnl whost preentilc angle
I ([E. Show that the latus reevum of the parabola is 2a sinfeh/cos b -

96.- Find the coordinates of blie foct of the normals from the poiié
{3, —Lin) to the parabola g2 =daw. '
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143. The Silipse. Tet

oy . ' . .
;2.|-?—_I(1) and #=acosf, y=bsinf..... (2)

be the constraint- and freedom-equations of an ellipse.
Then '

R e

is the cquation of the chord whose ends are (X;, .55, ¥o)5
hecauze (3) reduces to a linear equation in wpgn and is
satisfied when @ =g, y =7, and when &= <. ]

Put ¢, = cos B, y,=bsin ), g,=acosyy,=>bsn b, in
(3); then, after simplification, we get N

f; eos 91—5—92-{-%’ sin o, ;—83:—7\3:3% '6%925 --------- (4)

this is the equation of the chordy whose ends aze 0, 8,.
Put a5, =, and g, =7, i (3)} then, after reduction,

BN YT e 5
o T ®

this is the equation:g;\f the tangent ab (%, ¥,)
Put @, =« con BNy, = bein 8 in (5); then

o weosf gsn® g L. R ()

4 —
AV rL b

is t-hg{f_iha;tion of the tangent at the point f. }
rl‘{\@'e(juation of the normal at {x,, ¥) 18, from (3),

ad . o ap—f . .
KN I L TR ™
\J 2y il
} o? o

The equation of the normal at the point 8§ is, from (6),

. . b _
{z—a cos ) .éo%é_(y—bsm G)Ein_é_o

or am  bY _m g ®)
' cosf snf
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1—¢

Sinee gin &= e

2¢ :
118 B_JHd eos f=

where {=tan 9, we may use (see §89)as freedom-equations,

instead of (2), £\
_a{l1=F) _ 2 19)
= 1+{’2 * _1+t2.““““‘““,I';i’\"!
Equation (6} then becomes ) O
B\ 2ty 2y N
(1 +;&)t 120, i e (10)

the equation of the tangent at the peintt. If (=, %) be
regarded as known, then (10) is a gaddratic in £, whose
roots give the points of contact of Fhé two tangents from
@y 8)
Equation (8) becomes Y

bytt+2(an+a? — b P2(aw — w2+ Bt — by =0, ...(11)
the equation of the noxiiAl at the point t. If (z, y) be

regarded as known, thén (11) is & quartic in ¢, whose roots
give the feet of thesfour normals drawn from (z, %) to the

ellipse. BPAN
It is easilyghown (§ 135, Ex. 1) that
N _
A\ Y=mx-+c
is a tang&nitto the cllipse if
y j§ ~ Cm= @R BT i (12
a}\@}tﬂa’c lz4+my=mn
s & tangent if GHRHDEME =m0 i (13)
A0 144 Worked Exami;les. We shall now work some

N/ examples on the ellipsc.
Ex. 1. If the normals at the Four points 8, &y, 6y, &, on the ellip?
are conenrrent, prove that
T
From equation (11) it follows that 7,=0 and 7= —1, where 7y

means the sum of the products of tan -(?l, tan —%, tan %, tan 5*4 taken
two at a time ; and so on. 2 2 2 B
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T
But tan ${f + 6+ 934—9*)":172,—3_;_3—3”4:00;
thorefore G, + 0.+ 6;+0,=(2n+ D)7

Fsx 2. 1f the normals-to the ellipse at £, 8, ; are concurrent,
sin (G4 o)+ win (G + ) +sin (6, + 8,)=0,
and conversely. . .
Tet 6, be the foot of the fourth normal from the point of cons
currency of the thiee specified normals. 'Thon, as in Bx. 1, T,=20:0
thercfore Ve \

&, g, 0 g,. @ W

9- E 3]
tar 22 tan 2% v pan 78 pan 2L 4 tan 2 tan 2 "\
3 B ! B 2 4
9

2 a2 2 2 R\ ’s
; £
= —tan %(t}m %1-1— tan %3+tem %) . ’”“.\\.
tan ?";- +1an "."i+ tan 8y )
= 2 2 - It 7 \./
= 7 3 po since 7%=
O R L ™
tun 3 tan 5 tan 3 ) X ,;\
[ [N g, 8, M B s
= —= b —= wit, . Jul JYITON et
-:o?z B) eob 6] + ot 3 mt§+ ech 2 cot
. w6, B
Therefore ) ( ot 6; cot%‘x» tan 59 tan —_‘,‘ =9,
: A 2(e0s Byt cos )
that Ly 2(e0s 1008 05)
" L g, 4y 0
o ) '\-‘E}sin By (cos By+cos B)=0
ur Sain (f,+0)=0.

Binee e stepbare reversible, the converse holds.

A\ _ i
Ex 3. if“,th’e normals at four points on the ellipse are concurrent
and t“'?ﬁq?‘\he points lic on the line
O

A\ lw wy , 1_
Q T =0
.“\‘Llié other two will Iie on the line
\o/ &y
3 Tt _1=0.
al o

Let 8, €,, 6, 0, be the fomr points. Then
@ cosh(B+0) g SnkGiEt) g

7 con s (B, by b cosd(b— 0
 cosi(O+0y 7 s 4o (ii)
a cosd(f—0) b cos (6,0 ‘
wre the equations of a pair of chords joining the four points.

G40, : o
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Now . cos (0 +05)_ “cosd (6 -6
cos (6 — ;) cos 3 (B fly)
¥ 2cos5(f+6.) cos {64+ 8))+2 03 4 (H;— &) cos #(8, = d)=0,
that is, if cosd (#+ 6+ 6,4+ O Fcosd (F,+ 6, — ,~ 5, _
_ +eosd (0, — 0+ 6, ~ 0))+cos (6, — 0, — &4+ 6,)=0, 2\
that is, if {sin (6;46,)+sin(f,+ 0+ sin(fo+ 6,01 =0, by Ex. 1.

And this is true, by Ex. 2. AN
Hence (1) and (u) may be written fu the form ‘\ ~
lw  my ® W _ D
et =0, a£+bm =0 N\
145. The Hyperbola, Let j\’ ’
T \/ 5
g =1...(1) and a,-asec(i{y-—b tan@ ...... (2)
be the constraint- and freedom- equa:ﬁmm of a hyperbola.
Then |
_'__ (AR 1)( &9) (y !_{1)(9'_'%) ~B; %f 1 ... (3)
2% >

is the equa,tlon of the chard whose ends are (¥,,¥,), (X, ¥o)
The cquation of the hord joining -the two points 8, &
on the ecurve is A\

e 048 y.. 040, 0,46,
&cosﬂire—gsm 12 chog 12 e eerien 4

The cquatient of the tangent at the point (x,¥,)is
N/ .

B0t e, 5
o L TR ()

amtqf'the tangent at the point &,

*
’o

: L e =T tan 01 oo 6)
\\' _ asac@ btan@ Lo (
\ The equation of the normal at the point (x;, 7,) 18

and of the normal at the point 6, ,
ax sin 9\+Iby =(*+ 5 tan 6. «oeerinnnnen (8)
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The line - y=ma+te
is o tangent if o= FNEMI—BE ] o e (9}
and lz-my=mn
is a tangent if . P —BmP=0% .. (10)
EXERCISES XLVIL R\,

1. Prove that the point of intersection of tangents at the \poitits
fy, 6; on the ellipse ##/a®+%/l*=1 has coordinates N
Jonh(B 40 sind@,40) - (O
“eos § (0 — 0o cos 3 {H— ) N0
2. Prove that the eccentric amcgﬁes 6, 0 of the\ends of any chord
of the ellipun a%iaf+7%8%=1, which is parallelstothe tangent at the
point §, satisfy the relation 8 +6,=20. £ © :
3. 1f the chords joining the pairs of\peints f, £y and 6, @, are
perpendicular, prove that g ™

94’-32‘_; _ it

-+ 6,
fan =5 WIS T T

ov D By o\ ties on
4, Prove that the PO“,JP’ (Eﬁ—l—ﬁ a cos B, el bgin 9) lies on the

normal at the point 6. »Prove also thut every chord through the first
point subtends a 1’ig{f§§.z)§le at the second point.

5. Prove that$he feet of the normals.to the ollipse Aat =1,
which mect ab fhsgpbint (b, £), Lie on the rectangular hyperbola

N (a? — by — aPhy + ko =0.
major and minor axes of

6, £ ikérpoint whose projections on the
i.\P hy e are cut by a normal;

an ellipghe Jara the points in which these axes
Sho)’\r;"bh t the locus of P is an ellipse. 5 or
\’ % Prove that the tangents drawn at the points 8, B+—3—, 6—-7'5-
“oi1 the ellipse nﬂ:—i—%:= 1 intersect in pairs on the cllipse atfal + iR =4,
‘ . 1% . .
and that the controid of the triangle formed by the tangents is the
common centre of the ellipses. : )
8. Prove that a one-fold infinity of triangles can be ingeribed in
an ellipse sach that the ‘centroid of each coinmde?, rwﬂ;h the .(_:entrl'ee
of the conie. Tf J’Q be such a trisngle and Por thehtl iangle
formed by the tangents which touch the conic at P, @, £i, show ¢ the
thebcentroid of Lri"a,ngle PR also coincides w_lth the centre o
conie,
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9, Find the intersection of the nornizls at the roints 3,  on the
ellipse xz af + ¥ xbz =1, and dednce the point of intersection of “eonsecutlve
norma.ls” (centre of curvatnre) at the point £, Find also the ra.cuus of
curvature, and prove that the equa,t.wn of the evolute iz

(@x)" +(by)E=(a? - v,

10, Normals at £, ¢ on the ellipse a%/e? L5388 =1 meet the maj
axis in &, & IE‘,‘-,p(‘Ptl\’(]‘) prove that the plﬂJbCLIOI’I‘: of ', Q[f
on PG ave equal, and deduee (gecetrically) that 7/ 7g= H(\Q!L,
\\hﬂ’o T is the intersection of the tangents at P, €.

Lf the common value of the projecsion is ¢ and 17 £ df p\ dve that

gid= b?',n'kz where £ is the somi-diameter parallel to / Q, A b is the
semi-minor axis. A

11, Prove that the locns of {the in-ceutre of \11'1;313 L85 as P
moves round an oflipse, whose foci are S, 8 aydywlose eccentricity
fy ¢ 13 an elhpf*e whose major axis is S5 and whoso oecohtricity 1s

[22/(1+ e)]’f

12, P isany point (meos 8, bsin ) on g‘hhp% and PSQ, P8 fare
focal chords.  Prove that ih(, distan¢dg@R ¥ irom (g{ﬂ i

20(1 - oW )

{(] + 92)‘ sin? 0*;—“( 1 - 02)3 cos?

13. Show that ,4_3;;{1 -7)1) +?‘/b12

Iy the equation of tlg L}l()I‘{] of the ellipse a¥al42ib¢=T, whose
middle potut s (z, y8

14, The locus of faiglle points of chords of the ellipse a/e? 4 7 b‘-—
which subtend a\i\ght ahgle ab its centre, is
A\ ?,f“ ot E (r‘* ?,r-)~
P ai PR\ te)
15, Show th'tt i (&g, %) is the middl¢ point of u chord of Ll)
ollipsd mElad+ 52/ =1, (£, %) the point of intersection of the norma
:\"(‘N, g,!) that of the t‘lligenta ab ity extremilies, then

aﬁé 3)‘7} (‘_,‘.‘ J?f

O’ 15 I my, my are the glftdlr‘nh of fhc bangents from the poiu,
{z ) to the ellipse 42?1 AP =1, prove that Ule} are the roots ¢
the following quadr atic equation in s

'{
/;?’ (@ ~ &yt + 2rym + (02 — 7 =0

'"\

17, Deducs from the result of Hx. 16 that if the tanrrents Frow tiy
point {, i) to the ellipse neet al an angle d,

%
saa(Z )

e e



XxXL] KXKERCISHS XLVIL 387

18, Prove that the locus of the point of intersection of vectangular
tangents o the elipse #%a®+y%/6—=1 15 the director-circle

Fr Ry = 2
R S Al S/

19. Show thut the feet of the fonr normals from (x, 7) to the
ellipse a%/a®+74{h*=1 are given by cither of the equations

et cost — Fetuw cost @ 4 (a2 4 Uiyt ~ o%) cos?@+ 2c%ar vos @ — afxt=0,
ot sinth 4 2e%by win®0 + (e 4+ D22 — o¥) sin®0 — by sin - %2 =0,
N N
where of=gf— 0% O\
- Pruve that the coordinales of the centroid of the four feetate
Ny

(a%ni26?, — Bly)9d%). A\
s

20, 1f §,, 8, B, 0, are the eccentric angles of the fect, of the
normals from any point (e, i) to the cllipse #%/a®+ yg,"bﬁﬂ,&prove that

. at— b, " B —a? 3la Ny
) a= T Yeosfy (i) g %—E?m g

21, If the feet of two of the normals from#@ point coincide at the
point §, prove thal the locus of the middlecpoint of the jein of the
feet of the other two normals is PN

g _.‘-,.32 f)s
(3) _<aiz_:h'b‘3 '

82, Prove that if two lines (Lra:\ﬁ"’n through the point (%a, 30) mect
the ellipse a?ia? +52%0%=1 a,t,f{'{ur points, the normals at which are
concnrrent, one of the lineggwill'be dafa —y/b=2.

23. When two of t-ha\(}mr normals to the cllipse #3al+zE=1
coincide, prove thap the)line jeining the feet of the other two 13
a normal of the cllipaa

N

T

e IE] TE“—(&—Z)“‘)Z' .
2. ¥ind haldguation whosé roots are the gt’adic_}lltg of the four

normals thab Gin be drawn from (&, i) to the ellipse o¥e +77/67= 2
25. Foi any point («, ¥) four normals are drawn to the ellipse

§ ot \5@:-"'62:1 y p?‘twc that the tangonts to the ellipse ab the feet of

t]j@{\.'ﬁ ormals touch the parabola

N (i — gy — a2+ B+ Aoy =0
" 28, Prove that un v tangent to the hy perhola
at oyt 1

BT F b

] meets t_h(? conic #fat4y4bt=1 in two points,

1 @re cquidistant from the contre. ¢ at
27, If 8%, &'V ure perpendicolars from the foci to the tangent &

% point 12 on a ll}rperf:ol:f and NP is the ordinate to the transverse

§ 8xis, prove that the angles SN, S¥Y" are equal.

the normals at which
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28, Show that the part of & common tangent of the curves

Y Sl e
ATl and Gt e _
intercepted between the points of contact subtends a right angle at
the centre. £\

0

29, If the sum of the aguares of the normals from a point to the
curve sy =c? is constant, the point must lie on a cirele. AN

30: Find the equation of the normal of the hyperbola .-L'E;'af‘q}yﬂl.-"(ﬁ: 1,
drawn in a given diréction, in tle form U

- . .. Ka. T
% C08 o+ 3 8N o == (1?32 sin o cos o (@ sinfo — PAoasta ) 2.

31. From any point on the hyperbola %o — _qﬁf’B%; 1 straight lines
are drawn perpendicular to the asymptetes <ind ‘entting the curve
again in ¢ and ¢. Show that the etivelope Kf ¢ iz the hyperbola

G) - (=
@ B q‘_—Y‘} '
32. Show that the tangents to t-heilif;l:{t,angular hyperbola &%~ g?=a?

ab the extremities of its labera regha “pass through the vertices of the
conjugate hyperbola 42— yf= ~— B

33. If PN be the ordinafednd P& the normal ab a point F o a
hyperbola, whose centre T3¢, and the tangent at. P intersect the
asymptotes at L and JNshow that half the sum of (7 and OF is
the mean proportim.;al\bct ween O and €6

¢ \J

34, The tangéﬁ\b}:\ﬁb the ends of a chord P of a hyperhola meet
in T, and TM\TMare drawn parallel to the asympiotes to meet them
in ¥, ¥, Proyéthat MV is parallel to PO, '

35, A /vgriable tangont is drawn to the hyperhola 2?-y?=¢f,
cutting/plie’cirele 22 +o¥=u2 in P and @ Show that the locus of the
middle,oint of PQ is the cardioid (s Fy R =a (e — g4,

N
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CHAPTER XXIL : N

<\

<

POLE AND POLAR. K

/’*."
148. Joachimsthal's Section-Equation. Let T (Fizn*130) be
the fixed point (w,, %,) and U the variable pomd Z%, y), and
let TU meet a conie in P, P,; the studjof the position-
ratios of P, P, with respect to 7 and {&\:}7 TP, P, U and
TP,/P,UU, as U varics under certair{co ditions, leads to
important results. Let the conic e )

xg. 2 Y N/
@+%§§_ ......................... ()
AN

Fre. 130,

Tet A denote TP P, U (or TP, P U), then the coordi-
nates of P, (or P,) are : S

e AN N e @

FES U

LY
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Since P, (or P,) lies on (1), the values given in (2) must
satisty (1); substitute these values in (1), then
5 a? : 2 _
: @ )
or
of |yt (m" WY ) (9:32 1,2 ) -
o ¥ o (T ¥ _ L4 I
A (aF 02 '1)+"\ w T )+ o T ’.\Q'\’(S)
This is Joachimsthal's Equation. Tt is a quadpatie In A,
whose roots are TP/P, IV and TP,P, U, '[he“student
should work out the forms of the equation whienthe conics
are y?=daw, 270~ 9%H =1 and wy=ct ¢
For the parabols %= dye, J oachimsthal’y

) \-quai‘-ion ir
A y? —~ daw) + 27 {yy, — oz +m, )}\—;} G2~ dan ) =0, (4)
For the hyperbola  #%/a? — /b2 L7y
Joachimsthal's Equation is 9

N

-
2

N f-1) e (o), (& -2 1)-0, @)

RS al T B

and for the hyperbola :r;g;{::":f‘i':“,
A%y — %)+ 20 (3}?;’_1 +/B—]; - (:3) + (i — =0, ...(6)
QN 2

147. Pair of, Tangents from a Point to a Conic. If U of the
last section lje\m either of the tangenty from 7' (Fig. 130)
to the conid, $hen T'P\ /P U=TP,iB,U; the two rools of
Joachimsthal's Equation are equal. Henee from (3) the
pair ofsbanigents frow (x,, #,} to the ellipse @%/u?+ 320" =1
13 giwel' by

O @ ¥ G )_ N
K (G‘»z+bz 1) o +_!53'__ )= (? T ) !
O trom (5) the pair of tangents from {2, ¥,) to the hyperbola

\‘:

@ — {8 =1 is given by

(gq;g_i’fh 1)("?1_2_31_2_1):(5?31h§"y_1—' )2;
N VAV T a? 1E

from (4) the pair of tangents from (s, %) to the parahola
Yo =daw is given by

(52— )y, = daaze) = {7y, ~ B4 )}
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148. Pole and Polar. Definition. If 2 secant through s
point T cut & conié¢ in P, and P,, and U be the harmonic con-
jugate of T with respect to Py, P,, the locus of T is the polar
of T,

If (PL.P,TT) in ¥Fig. 131 is & harmonie range,

TP /P U=—1P,/P,U; A
therefore the sum of the roots of Joachimsthal's Equatiodus®
zero.  Hence the polar of (i, ¥,) with respect to = | \J

el

: 2 2 . : <
(1) the ellipse %4—1:1 is %-{-&:1"%

& IR
2 2, AN\
(2) the hyperbola %—%:1 is %—\’%zl
D

(3) the parabola y2=4daz  is g;g{lt 2a{z 4@, )

T,

) Fre. 131

The polar of a point with respect to a conic 1s therefore
& straight line, and the point is called the pole of the line.

The poﬁ({.r gf A ?')mf_q,f onlstde @ conic "LS the chord Of
contact of the poin of tangents from the point to fb:e_com-cf.
As TP P, (Tig. 131} turns round 7' info the‘r osition ':ij
& tangent from 7', TP, /P, U= —TPy/P ,U, and I,T ies outsl 3
of P.P,, 50 that U lies hetween Py and P, When F, an :
P, run together at P, 7 also is at P, the point of eontach:

€.4.Q, o2
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hence the point of contact of each tangent from 7 lies
on the polar of I\ But the polar of 7 is a straight line,
80 that the chord of contact of the tangents is the polar,

149. Reciprocal Property of Pole and Polar. J f the poi
Alw,, y,) lies on the polar of B(w,, y,) with vespect toe
conic, the point B lies on the pe.ar of A, and A ahd B

are catled conjugate points. et the conie be .4

a4yt =1;
then the polar of B(z,, ¥,) is "

T Yy

: af LBt O
A (2, 7,) lies on the polar of B i@iérefore

Ty Yiln" L
L o

Again the .Iiolar of .A_(;L;,"yl) is

| CERYALT @

L ¢ ) :

and w,, ¥, sa-‘i Y equation (2), according to (1), so that

B lies on (2), that is, B lies on the polar of 4. A and 5 are

called conjugirte points. If two lines o, b are such that

onc pasgesdthrough the pole of the other, it may be shown

that thewJatter passes throngh the pole of the former, and

the lwes are called conjugate lines. If a pair of conjugate

lings™meet in 7, then they are harmonically conjugate with
respect fo the tangents from 7 to the conic,

150 Examples of the Use of Pole and Polar. We shall now
give some applications of the theory of pole and polar.

Ex. 1. If a variable secant through a fized point 0, which Hes putside
or inside 2 conie, eup the conie in Q and ¢, and the tangents at Q and ¢
meet in T, the locus of T is the polar of O. '

8¢ (Fig. 132), the chord of contact of tangents from 7, is the polar
of 7' (§148), 0 that € lies on the polar of 7'; therefore, by he
Reziprocal Property, T lies on the polar of ¢: in other words, the

" locus of 7'is the polar of ),



8 144, 150] POLE AND POLAR. 393

fiz. 2. The polar of & point within a conic iz parallel to the chord of
the conic which is hisected at the point.

Tet ¥ Le the middle point of the chord ¢ in Fig. 132, Since Q¢
is a chord through V, then, by definition, the harmonic conjugate
of ¥V with 1espect to ¢ and ¢ lies on the polar of 73 call the point £
Bince ¥ bisocts §¢), 7 is the point at infinity on the line 9¢ (§ 116)
Again, ¥ lies on the polar of V7 by Ex. 1; thersfore /T is the polar
of T, But IF is the parallel to ¢ through ¥} so that the polar of Fa
ix 7'H parallet to the chord bisected at T2 ¢\

_ Fm: 32,

It Vis (2, %) and the conie s el +y2¢=1, the polar of ¥ is
v j gy =13 hence 4h® equation of @@, the chord which is
bisected at {1, 3(1): iz . o

. L J —
(it e rip=o

Further, all ché¢Pds of the conic through C, the centre, are bisected
at ('; hence {hguhord through ¢ which passes through [, the point at
infinity on #HOQ, is also bisected at ( so that the polar of f
goes thropsli~(. But TV is the polar of 7; therefore TV p'a.e!%e:a
throngh/@'and if it mect the conic'in P, £ as in Fig. 132, (PP:@I )
5] k&iﬁonic range, since @ iz the polar of 7, and OV, OT=CF g
. A.gli%f‘n, all chords parallel to Q¢ pass through 1, so that 'the s lar
?bf & 15 the locus of middle points of chords parallsl to @, and the
4005 i3 therefore. the straight line C'F. .

» It ¥ is the point (x,, %33 within the parabola g=4as, the equation

of QQ’ 1% (y — _’!‘)’1)3/1 = Ec&(x - xl‘)'s

s that the gradient m of the chord whose middle point is (£, ¥ 1)

24y, and t.%ereforc 4, = 2afm. Honce the middle po1qtslothhcili‘ﬂz ?:

gradient m lio on the line y=3a/m, parallel to the axis; ths JI2G &

the dimeter for such chords. V@ is ealled the ordinate 0

respect to the diamoter PV, (See §152.) . :
When V therefore lies within a parabolz (Fig. 133),&" g_p_}? This

to the axis and {7 VP o) is a harmonic range, 50 that ZE=27F,

rallel



394 ANALYTICAL GEOMETRY. [CH. xX1:,

gives a simple construction for the polar of a point ¥ within 3
yarabola. Braw VPT the diameter (parallel to the awis) through ¥
16 snzet the parabole in P, and make PT equal i0 BV} the polar of Vis
the parallel TE through T fo the fangent at I,

.
- Nt
S 3
e AN =
N
% o

Fra. 134,

Ex3. II ¥8 N'R are the ot:d’ﬁﬁtcs of £, I with respect to t-‘nfj
diameter through a poiat 4 an¥parabola which mests the chord A4
in 0, A= AN, AN,

Produce 04 (Fig. 1340 O so that 04 =4 7, then €7 paralle) to
NE is the polar of Of%e was sean in Ex. 2. Henee (RI'OP) is &
harmonic range (if, B meet (/P in Py therefore, by § 45, (QOXFY)
is a harmonic range,ﬁo’ that AGP= 4N AN (§14).

Bz 4. If P8 7§ be tanrents at § and ¢ on a parabols, the
perpendiculary from the focns N to &MY bisects the intercept made by
TQ, T oiNh6 tangent at the vertox.

Fig. 133,

\

¢ Q
\i"\".
T\ 50, K

R\ N
Q4 M
P —
‘\M\:;‘ Tl L
) 2

v,
Q

F1g, 133,

Let 79, T¢ (Fig. 135) meot the tangent at the vertex in M, ¥, and
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let ¥ he the middle point of §@. IDvaw TH parallel to @' ; then
T4 iz the polar of V oand (GG VY iz & harmonie peucil. Now
8, S& are perpendicular to 79, T¢, and SZ, the latus rectutiy, is
porpendiclar to T'T. . ‘Pherefove, if we draw SH perpendicular to
TE or @ to moot WV in H, S(YNLIT) iz a hurmonic pencil ;
and H#4 is a trapsversal of this peneil parallel to the ray SL; therefore
MN iz bisected at A (§116).

it may be noted that If @6 meets the axis in O (Fig. 135), 70 also
Lisests 4N, Draw 70 perpendicular to the axis to meet it in N
TG ia the polsr of 0, so that 7(@FOD) is a harmonic peneil $of”
which the transversal A is paralle] to the ray 7¢, which s owé&'t}:at
T0 bisects MV, OF is also bizected by MV ; for the vertex d\bisecls
00, singe T is the polar of 0, "G

. ? '\
Ex. 5. The polar of the focns of 2 conic i the di’t‘e}tr’ix, and the
tangents at the ends of any foeal chord cut the latug\dectum produced

in points equidistant from the focus, O

. N\
M
\ Z
N

Q

P\ W
P\ : . H
:"\ W
:\\ . Fre. 186

R Le" any focul chord PSQ (Fig. 136) meot the directrix in & and let
“\!{, & be the projections of P, ¢] on the directrix. Then

PSS = P ¥G= - PH|HG,

S0 that P is ont harmonically at § and &. Henee the locus d }H
1fs the plar of .§; in other words, the directrix is the polar of the
ocus, '

If the tangents at P and € moet the directrix in Z, then Zi (PQS} x]H %
i 4 harmonin pencil, and the latus rectum is # transversal palaz}
to the Tay ZH ; hence VTF, the portion of it intercepted hetween
ad 76, 15 hisected at, &,
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Ex. 6. PAB, PCD are secants of a conic ABCD drawn from a, peint P.
If AC, BD meet in @ and AD, BC in R, show that QR is the polar of P,

Let X, ¥ in Fig. 187 he the harmonic con jugates of 2 with respect
to 4, Band ¢, D respectively,

Join @X, §F; then HABXPY and @(CDY Py are harmonic neucils,

But ¢4, 9B, QF are in line with @0, @D, GF. Therefore §
Q¥ are in one and the samo straight line (§46); in other words
lios on XY, Now X'F is the polar of P, therefore € lies on the polar
of P, Similarly & lies on the polar of £, 5o that @R is the polar br P

Note. Tf QR meet the conic in 7 and 7", we now kuox‘f%haf: FviA
LPT" are the tungents from P. The example shows how ‘to,"draw the
tangenis from an external point to o conic Ty use of the"r(uét‘.only.

2 T v
\\ ¥ia. 137,

w4, B, 0D are any four points on x conic and AR and. ') meet

NN P, AC and BO in G, AD and BO in £, as in Fig. 137, we have
N\ seen by Ex. 7 that Q& is the polar of P Similarly P@ may be

) 2

shown to be the polar of B, s0 that, by the Reciprocal Froperty,
£# is the polar of ¢, The triangle PR iz therefore such that each
side is the polar‘of the oppesita vertex ; such a triangle is called 2
self-conjugate triangle or a self-polar triangle.

Bx. 7. 'The tangent at 2 on an ellipse cuts the auxiliary circle in
¥ and ¥, and the other tangents from ¥ and 7 to the eliipse tunch
it at @ and ¢ ; show that € meeta the tangent ¥ Y’ on the major
aXis and that ¥, ¥’ intersect on the ordinaie at I
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Let @F, ¢ 7" meet in O, and let §4, P¥" meot in T Then @ ia
the polav of O with respect to the cllipse, so that 7' lies on the polar
of 0, and therefore @ lies on the polar of 70 But P, being the point
of contact of the tangent 7', also lies on the polar of T'; therefore O.P
is the polar of 7. Hence if OP meot @@ in M, (QUHT) is a
harmonic range ; therefore O(@EY T} is a harmonie pencil, and the
range (¥ ¥ 27} formed by the transversal P7 is harmonie, by the
fundamentul thecrem (§ 45). Now, if the tangont at P meeb the,
major axis at T, we have "I/ TV =88 V=P ¥/ ¥ P, by similay )
triangles 8£7F, S PV, Henece " coincides with 77 or @& and, XE"
meet on the major axis. Since T iz on the major axis, its polar’is
perpendicatar Lo the major axis; but OP is ita polar, therefre P
is the ordinate at £ Now (ZP¥ Y and (THEY) beipg harmonic
ranges, it follows from § 46 that @¥, ¢ F cross on Igf{that is, on
the ordinate al P, N

The following examples llustrate “the se of pole and
polar analytically. : 4D

Ez. 8. The locus of the poles of ta}ngeﬁf} to affaldoRB0=1 with
respect to #4-yf=u? is the ollipse als® Ho% =at. .

Let {#;, ;) Do a point on the loguss” the polar of {(z, 3 with
respect to 22 4 30— a? 18 B e rererernerrraeatsranannd (i)

If (i) touches 23/a® 43582 =1, ghen

szlg’_y_ 523/12= aé}

50 that bhe locus is L Vet Pyt=at.
] Bx 9. Thelocns of bfcs of normal chords of £he ellipse 2ol ybt=1
is the curve { R T
NS G-y
Let the o(uatién of a normal chord be-
.‘\'". @x __b_y=g2-bz’ .............................. (i)
\M cosd snf
and l\Q\i’os'pole be (,,); then (i) can be put in the form
R\ . 00 PO (i)
: e .
N\
W From (i) and (if), we have
e 3,3 =gl —B?
weosh  gysind
af I B 2_ p0igin2d;
or . ;:1-§=(c-:3 —EB®2 eostd  and ‘;1_3'_(“ P st
h . T ab B _fad B2
ence, by addition, . (7/_—2+ﬁ—(®2 - b1

1 .
rl:he locus of (2,4,) iz therefore a%/2® U =(a’2'_b2_)2'
The student, should sketeh the curve.
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EXERCISES XLVIIL

1. It 6, ¢ are the eccentric angles of points 7 ¢ on tho ellipas
2+ 3308 =1, prove that the eoordinates of the pole of PQ are
i i P

#eos (O $Yoos (B —),  bsin3(B+)cos 56— ), A
2. Find the pole of the line lrtmy=1 with respect to
(1) a¥at g yiihi=1 ; (i) oot —grini=1; O
(iii) my=c2; . (iv) yi=4awr. NS ©

8. Find the condition that lrdmy=1, Votm'y :_é l'}.‘sﬁbuld he

conjugate lines with respsct to the conics ()-(iv) in E‘x»' \ _
4. Find the equation of the chord of (1) #2=daz, QQ L. =1,
whieh iz hisected at the point (zy,). $)

5. Two tangoents ave drawn from («, B)to the elipse 28?4 5%38=1,

show that the [ength of the chord of coniact dg\/
20 (oo + BYBHE | (it ,82,-"3)5’.7\:1)#-“’(&2‘.-’ a2+ f213),

6. Prove that the polar with respechto a hyperhola of any point

0L an asymptote is parallel to that agyiptote,
™

7. L wnd § are two hixed dinis ; throngh @ civeles are drawn

having a eonstant radius ¢, whereri= P2 ; prove that the pedars of

P with respect to these cireles: wonch u roctangular hyperbola whose
centre is % N :

8 Trove that the ta%gents ab the oxtremities of all chords of the
ollipse a2%/u? 4.4 *=¥"which subtend 2 right angle at the centre
intersect on the el IRC B et + g bE =1 fad L1753,
9. The polaphof ‘any peint @ with respeet to a conic and the
perpendiculm: to it from € meet either axis in 7' and & ; prove that
O\ CF. Cr=08z, '

10. Rigshe point 8 on the elli pse silat 4202 =1, RY and RS mect
the Qéfﬁ(}’a.gain in £ and @; prove that the coordiuates of 7% the
polohPY, are B(1ten

—tt ens 6, [t o

T,

(11, “Tho straight lines IS, P& joining any point on the ellipse

.
%
\:

e+ 4B =1 to the foei S, 8 meel the curve aguin in &, €.
Tangents at 4, ¢ meet in 7. Show that the locus of 7 as P moves
round the curve, is the ellipze :

et (- (L,
e being the eccentric by of the given ellipse.
12. Tangents drawn from any point on the parabola y? - 2ax+ e=0
to tonwch the parabola ¥ =4az meet the axis of @ in Uhe polnts &, F.

Prove that £, F ave equidistant from the pole of the comnmen eliord
of the parabolas with respeet to the paraboly 4% = dam,



XxiL] EXERCISES XLVIIL ' 309

13, If a cirﬁle _touc.h_es a parabola at & given point, the pole of its
chord of intersection with the paraboly wili lie on a fixad straight line.

14. Show that the Iocus of the feet of the perpendiculars let fall
frow points on & given diatmeter of & conie on the polar lines of these
points is a rectangnlar hyperbola.

15, The pole of the normal at P o an cllipse is & and the foot of
the perpendicular from the centra € on the tangent £0is T'; prove
that the rectangle T#. PO is equal to the square on the semildiame;e\r‘\
conjugate to OF, TP, N

16, Tis any poini on the circle #?+32=af417% (' is the cantre of
the ellipse «%/¢? 43262 =1, TH and CN are perpendiculars tg'the polar
of T with respeet to the ellipse ; prove that the rectangle)CW .Y is-
constant. A

17. Sand 5 ure the foci of an ellipse, ¢ and ¢ poioks on it on the
game side of the major axis, such thab 56, 5'¢’ are parallel and make
an angle # with the major axis. 7 is the potle\bfoQQ’, £ is the point
whase eccentric angle is 8 and the tangent dt £'muects the major axis
i I Bhow that 277" is at right angles $¢ % )

18. Two points P and § are such thabghe polar of one with respect
to an ellipse passes through the oth er,’@nd- the line Py passes throu gh
a fixed point ; show that if 7 moyeés along a stiaight line throngh the
centre of the ollipse, the locus of\@ s u hyperhola.

19. A point P moves alomgithe line #42y—3¢=0; show that its
polar with rospect to y¥dar always passes through the pont
(_' 30’5 - 491‘)‘ o\ : .

20. Tt the polartef P with rospect to the ellipse a%/af+3/b*=1
touches the ellipse +° M@ 4 2/ =1, prove that the locns of Pis

o \7 o S? ol + BB =1, - :

2L Prove t}}aﬁ the pole of Py with respect to a conle is the inter-

section of phevpolars of 2 and ¢
. 4 . ' 4

22, H'W0 triangles ABC, A'B'(Y are such that the sides of ABC
aﬁ’i N’o]ars of 4, B, €, prove that the sides of ABC are the polars
UK B, ¢ .
o~ 23. If any number of pointg are collinear, prov
Aith respect to 4 conie aro concurrent, .

24, 1f tangents are drawn to a conic from points on.a given straight

line, the chords of contact pass through a fixed point.

23. Prove that the polar of a point P with respect to a conie centre

1% paralle]l to the disieter of the conic whose irection i conjugate
io that of 05

25‘ o, b e dare the polars of the points
v £ torm w hamnonie range, prove thad €,
Pencil, =

e that their polars

A, B, ¢ D and I 4, B,
b, e, d form a harmonic
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27. A conic touches the sides BC, €A, 4B of a bripngle al P, g, R
respectively, and @K meets BC at P} show that {(BCPP Y5 o harmonic
BP 0Q AR

range, and that PO G4 7p=L

28. AB, AC are the tangents from A to g conie. A variahle tangent
mests the conic at 2 and BC, €A, AR in ¢, R, 8§ respeclively ; prove \
that (PQAS) is a harmonic range, and that A7, OY intersort on the
line 47, O\

28.. Parallel tangents to a conic at £, 0 mert the taargafit Ut the
point K in §, 1'; PQ moets this tangent in & and P7, QS neet in V.
. b4 '«(

. Show that 2V is the polar of O ™A

30. Two conics touch at 2 point P and intm’set{{iﬁ- points §, &
Through P 4 line is drawn cubting the conicsg®ain in 4 and B;
prove that the tangents at 4 and A interscet o\ Q%

31. Show that the polar, with respect to & Nellipse, of any point on
the auxiliavy cirele cuts the allipze at th x(1}31'61:riibies: of {wa parallel
focal chords. %

% 3 .
32. PS¢ is a focal chord of a-conic: » PP s the tangent al P and
the perpsndicular through § fo RG mects PP in 70 Show that the
directrix bisects a7

33. Tf any linc e drawn thi‘t}{fgh a fixed point to cut a parahola, ‘thé
tangents at the points of Inbegiection will meet on & fxed straight line

34. On a dixmeter of'g parabola throngh the point P on the curve
are cut off P4 and PBro that P bisects 48, Show thut the polar of
A goes through s'\ﬁd that the polars of 4 and B are paralle] Jincs.

TOOY meets-the’ curve in ¢, @' and the diameter through # in 0; _
show tha.t: A\X =71, TQ.

36. “E*G & point on a parabola, PV the diameter threngh 7, ¥ any
pointioen the diameter, T a perpendicular from T to the polar of T,
rgekhg it at . Show that the focus lies on HE

T,

w3 37. T and K are points on the axis of a parahols equidistant from

35. 7' is any\point on the tangent at P on a parahola. A socant

(“the vertex. Show that the segments of a chord through X, made by

a\"
\
\3

tha axis, will subtend equal angles at H. -

38. 0 is any point on the diameter of a parabela through a point P
on the curve,” Any line throngh @ meebs the curve in &, ¢ and the
tangent at £ in T If 7 is the middie point of OR, prove that A£G,
RO, R aro in harmonical progression.

39, 79, T¢ are tangonts at @, € on a parabela whoae focus In S
and €4 cuts the axis in €. The dinmeter through 7 euts the
directriz in ¢ ; show that 70 and S8 Iiscet one another,
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a0, T4, TE ave tangents to a parabola and Q4 cuts the axis in 0.
£ ¢ is the projection of 7" on the axis, prove that 04 iz bisected at
the vertex of the paraboia.

41, T, T are tawfmlt‘s to a parabola which meet the tangent
at the vertex 1n A, Y. Tr 4 culs the axizat (3, show that the ortho-.
wentre of triangle Jff) ¥ is the fdcns,

42, The tangent st P on an ellipse meetz the auxiliary cirele m
FoYSuad T4, P/ arve the other tangents from F, 7 to the ellipge,"
1t QY @7 meet in A and the tangents to the auxﬂln? circle, }t
¥, ¥ mest in {, prove that £, A, & ave collinear. ¢ |\

!

43. Tangenis from a point P to the parahola ?;‘ dan=Oive har-
nonic (,DD}LIG“'LtB% with respeet to lhe tangents from 7 to, L{Qé‘ parabola
£ 44by=0; prove that the locus of /s the hvperbola. @'y‘-— 2ah=0.

44, Bhow tlat the locus of points from which t Syfangents to the
ellipse a%a?+2%0%=1 and to ils auxiliary cirglg\Form a harmonic
pencil is & Loncentlu, elhp*e and find its equd,tlfxg‘

4B, Find the Tocus of the intersection? oﬁ ’fanrrmtq to the conic
el fydibt=1, which meet at an angle c{; 7

46. TFind the equation of the ]L\Lub of‘the interscetion of perpendi-
wular tangents to

B TN Ny -
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CHAPTER XXIIL, O

DIAMETERS OF CONICS.
151. A Special Form of the Linear Equatiohy’ An im portant
equation in the study of conies is O

w=E_y—n_ %6 ' ]
- a*'sin,aj_.%‘ ......................... (1)

or ﬂ::§+‘rcosiﬂz».’;y;n+“rsin L ROV (2)

one form (§34) of the equdtion of the line through (£ 5) of
gradient tan g, Ineasuring the step, positive or negative,
from (£ ) to (z, y) alang'the line. The following examples
will show the mode(of its application.

0N

B 1, Tet 4 (S\};)Qb(\ a specified point inside the parabola yE=daz.
A chord P of $he turve is hisectod at 4 ; find the equatinn of £
The equatiopse=£ 4-r cos B y=ntrsind represent any line through
(%c': 75 letyihem represent 7%). ?f (# ¥) is the point £ or ¢, then
y-=4a«vz%\tl;e1‘cfore (n+7sin B =de(E + 7 cos 6)
O e €I 2 (o 5 6 - 20 008 ) £ 193 — 4a€ 0 oo n(B)

or
' a.’q'u%mtic whose roots are 4 P and AQ. Now AP+ A¢=0, bence

7SN A -2ae086=0 or tanf= Bafy.

. 2
Sinee I’ has gradicat Zafy, 1ts equation {s y— 7 =f (z—§).

Ex. 2. Prove that the necessary and sufficient condition that (£, )
should lie within the parabola y2 =doz is that nt—daf he negative.

Lot 4 be-the point (£, ); PQ a chord through 4. Then, ag in Ex. 1,
AP, 4¢ ave the roots of equation {(3). But AP.AQ, the product of
the roots, is negative if and only if 4 lies within the curve ; therefore
the necessary und sufficient condition required is that (3? - 40&)/sin’t
be negative, or that B —4u§ be negative,
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Ex. 3. ¥ind ihe equation of the tangent at (£, %) on the patabols,
#i=4ez; find also the giudients and lengths of the tangents from
. (§, 7} to the parabola, when (£, ») does not lic on the curve, B

Tf (£, 3) is on the curve, one root of equation (3) is Zero ; if tan @ is
the gradiont of the tangent at (£, 9, both roots are zero,

Hencs the gradient of the langont at (§, 4} is given by

yrin §—2acos f=0 or tand==2a/y, N
. 5 O\
so that the eguation of the langent is y—5n= = (z=&or yn=2-a(:a:+§)?".
as in § 142 i . S
Now suppose that (£, ) is not on the curve. If » in equatiem (3),
Ex. 1, is the length of a tangent from (g, n) to the parabola theiroota
of (3] are equal, whenee - ¢ $/ .
{nsin #—2a ens O =sinB(n®— 42€) or Etanif-gy im.l‘l%+ a=0...(4}
The two vakues of tan (f got by solving (4) a-re{he cradients of the
tangents from (£, 7 AN L
Also ##=produet of roots of (8)={n*—4af}{s?f, where sin’d is to
be found from (4}, We find that \® ]
4t =t~ daf ) da? + L’F}':t' W — daf) 2
Ex 4 Through the point ;1(]4{.’;,:2’“5) within the cirele
Sar Byl — 9y =40
ate drawn the chords which, are trisected ab A ; find the equations
of the chords. \‘ i
Let z=21 4y cos @, g5 rsin @ be the equabions of g, a chord
tisected ot A, SybsLRale those values in the eguation of the eircle;
the quadratic in #%o obtained, namely
7572420 (7 08 f-5in B) 4020y onresemsnes oeeer(8)
s for vootd B2 AG: say r,, r,. Henco 1y +27=0 or In+n=0;
Ehcl'e'FOPQ.Q:IgE'?'z),(2""1%:‘,'?'2);O lf;" 25(’*" (g iy =0, 50 that by (3)
,§ “/ (7 eos f4-sin §)2 =25, giving tan f=4/3 or —3/4
,Hﬁ_l}ce the syuations of the chords are y—25=§{z- 14{5) and
LIS =~ Ha ~14/5) or 47— 3y=10 and ds+4y=10.

3 2.Ff,x - 5. The eguation of the mormel 2t the point ¢ on the ellipse
@+ 7%h =1 may be put in the form :
| x-noosd_y-bsnf T
boos ¢  asinfd CD
Let tan é be the gradient of the normal, then the equation of the
Bovtal may be written in the form _
x—aeosf .?/_FEM.—_:-_ .......................... {8)
cos sin ¢
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But, by §143, we have

asin o
tun =ZTU.?9’
s0 that
heos . gsin @
8P Tt 1 sy S = gt R
Beorfl . aain A ¢
or o8 h= 4 —or o sing= +— .,..‘“\(7)

£\

If we seloct the two posi tive signs in equations (DNthen » of
equation (6) will be positive or negative according as fmk b cos ) and
cos ¢ have like or unlike signs; in other words, » willyhe pbsitive when
(%, ) lics on the outword normal and negative w]m\n{C'c, %) lics on the
wmweard normal af g, 'S

By help of eguation (7), equation (6) can nowNowwritten in the form

CE—aes @ y-bsin @ NP
beosf  aein@ 0D

Exz. 6. On the normal at P ththe cllipse a%o?+ 3% H%=1 are

tearked off 1 outwards and Pg¥ svards, so that I and PG are

each equal to the semi-diamcber’ eonjugate to OF; prove that
C9=a+hdand (@ ~a—5p,
and deduce a constructions ar the axes of an ellipse when a pair of
conjugate semi-diametors ave given in magnitude and position.
Let P Lo the point (¢ cos 8, bsin 6) and let 07 be the gemi-diameter
conjugate to (77 llhz,xn the equation of the normal ag P is, by Ex. ]
“( oo y-bsing_ s
N beos @ — usin® 04
If r= Clyy N w=(a+B)ecos b, y=(u+b}sin g
and e Ot ot (a4 b)Y or CQ@=a-Lbh
H2ER0D,  a=(u- Byeosf, y=—(a—B)sin f

alﬁ\xw‘ O =22+ =(a—0P ov (G =a—b.
RN _ s G lerBysing
B Also tha g1 a,dlelnt of C’Q-- (@t cos, g=tan r‘)

e

\\W
\/

S 1 . _(a,—b)ainﬂ__
and the gradient of 0 = T(a=Heos g A é.

Hence the major axis bisects the angle between €4 and €4, Thas
the directions of the aves are determinod ; their lengths are .alﬁﬂ
determined, for CG+ 0@ =20 und 0Q — 0g =35, \

When €P, 0D are given in magnitude and position the points ¢, ¢
are found by drawing QPg" perpendicular to £ and marking Toff
P, P& equal to CD; the major axis is the bisector of the anglo Y,
and the lengths of the axes ars.given by the cquations just written.
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1, Tin
which iz b

2, Fin
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EXERCISES XLIX.

d the equation of the chord of the ollipse a%a?+y?/be=1
isected at the point (£, 5). :

d the equation of the chord of the hiyperbola a2fat — 3l =1

which Is bisesbed at the point (& 0.

3. The neccssary and sofficient condition that the poing (z,

ghould lie
negative.

; )
within the ellipse #%/02 42252 =1 is that a2 45402 ~1 {)e

4, Usc the method of §151, Ex. 3, to find the equation of iﬂ:@
tangent (i) at (299,) on @¥a®+ 42B2 =1, (1) at (o) on #¥al— yr=1,
(it} at (orygry) om a? + iy + by + Qg + Oy + 0=0. NG

5 U

TP, TG wre the tangents from Tz, 3 to %iﬁarabola

#=4ax, whose focus Is 8, prove that

8. A straight line through a fixed peint

e +2]H:11/

TZ’.'TQ:(12—4Q£};%_9. O
P\C{,\q) meeta the lines
+hy*=0 at the poinks 4, B and a\gdiut ¢ is taken on the

I 3

line such that 1/7Q.= 1/ +1/PB (PA, PENPG being steps); prove

that the locus of @ 1s a straight line.

7. Tind the longth of the int-erccptm:llide on the line y=ma+c by
the l_iues az Ay 4+ byt =1, &N :

8. Fin

9. Qis

& Cnstant

d-the area of the triangié formed by the lines
Lo 4 gy = 1 N+ Qhagy - byt =0,
a vaviable poing g"ﬁ}he line gz + by 4e=0. Ontheline joir lmcs’;

@ to the origin ave ms{\'cd off points £, P' such that PO=0=d,
1l

10. Pro

i tind thedoeus of P, P
ve that lte/locns of the points which divide in the ratio

£ 2 series of Bieeds inclined at an angle # to the major axis of the

CORIE o2

4 Z

+HHBES1 s given by

PN

%{"jﬁ_r?/ Cigr; 6)2+ (1B (.50329 sin?()) (?23_‘_1’ 1) ~0,

@ T

2 8§ K
#1d &y some observations from this equation.

ALSPry
\

12 iy
[E] (rx, B)

ve that the squarc of the length of the chord of the ellipse

"'\‘?‘fff‘az*'yzf@:l, which has its middle pomnt at (&, £), is

L hE BB e ,{-2)—1_ 1}_

d the equation of the chord of 2zy=d whose middle point
Prove that the locus of the nuddle Eomt of a chord of

2y =0 Which is of constant length 2d, is ¢*(a® +y7)=2oy(#" +¥ -di).

13, On

0z, £) 8 meay proportional 0 is taken to the segments of the

a chord of the parabola y?=4az through & fized cgg?(lf

\.
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Show that the locus of 3 is the diameter whose equation is y=/ke,
where ¢® is the numerical value of 42— 4uh.

14, Prove that the equation of the tangent to the ellipse x2/a%+ y2in?=1

at the point & may be written in the form
z—acosf y—bsinf r
_ _ asinf = —beosf OO Q|

where r is the step (positive or negative) from the point of cont%ct to
= ¥ A

16, If the tangont at P on an ollipse iz met in 7, 7" 1 h pair of
pavallel tangeuts drawn at @ and ¢, prove that ~R7¢ PP =(D?,
and also that §7. @7 iz equal to the square of shd, sémi-diameter
paraliel to 7. \\

16. 1f the tangent at /* on an ellipse is nisbNin Z, Z' by a pair of
conjugate diameters, prove that PL, PL = ¢B _

17, Find the equation of the normal a.t’é}ﬁcint ob. an ellipse in the

form ~
X5 ¥Yo¥ )
— ‘_—r,
P B
af »."" b

whers p is the perpendicniar ﬁnm the centre on the tangent at the point

18. If the normal at thdZtBe ellipse #%/e®+ 282 =1 meots the axes
in ¢, g and ¢ iz a poing.on'the normal such that

PR I
) \‘ Py EGT P

show that thécoordinates of ¢ are (5”2 — 8 L eos 9, BP—a?y o 5).
' N uf 18 af 6

\& :

152The Parabola. 'The following are the leading
thebroms regarding the parabola.

O '

R

RN TeEroreM 1.
\\ The locus of the maddle poi@t& of parallel chords of the .

\J  parabola = dam
is the diometer ¥ :%f

where m 18 the common Q-mdient of the chords.
Proof.  Let V(& ) be the middle point of the chord Q¢
(Fig. 138) of gradient m. '
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Let the cquations of Q¢ be
' r=Ftreosf, y=gn-+rsing,

a0 that tan @=m. N
If , 7 are the coordinates of @ or ¢, then ¥*=4ax, so that

7ogin? -+ 20 (i sin 60— 26 cos @) 42— daf=0. .......(1)

Y
2. 8 ' \
i“ﬂ
M_|N P .
v D LA\
Q Y,
A S ’.x”\s.

1

Fre. 138,08

_ TG, TQ are the roots of (L)pse that the sum of. the roots
18 zero and therefore N

. 2 20
7 8in 9—‘{2@@%39:0 I R (2),
¢\J
\T\'I’Iting‘ y [or 4, \N:\l'l}t\-'c
: O 2a.
o N/ = -
J N

¢

3 the locys‘of middle points of chords parallel to q.
he locugd¢/n line parallel to the axis; leb it meeb the
eurve abP, PV iy called a diameter, V@ and VQ)' are
°r‘§111,§.!335 of the diameter PV, B ) ,
AF0 tangent at P is the line obtained by moving €Q
'~~¥g&wlle1 to itself till @ and @ run together, so that the
\Engent af P g parallel to the chords bisected hy the
diametey through 2. If NP, AN arc the coordinates of P,
NP=" and ANSQ__@. .................. (3)

12 ¥

Also SP = NP = a4 = o860, coovrnrernes (4)
me



408 ANALYTICAL GEOMETRY, {6 xxum,

THEOREM 2.
If QV is an ordinate of the diameter through o peint P
on a parobola, QV2=48P. PV,
Progf. (Sece Fig. 183.)

V2= —VQ. VQ'=—4:§1 2‘9"2-, BY (1) e, (a")\
Bat, by (2) and (4), _ R )
20k 1 8P, D
=m w5 O
therefore, by (5), : ‘ '\\“
@y (ane=T5) =458 %)

=4SP(NV — NP%}&P PV,

Cor. Ifthe diameter omd tagent through P are oblique
ares of @, y, then VQ=y and, P¥ =z, so that the cquation
af the parabola referred to ghove awes 1s

=40, (6)
where «=8P, N
4SP or 4o is Lalled the parameter of the diameter
through P. ke )
The equation of the tangent at (,4,) on (6) is
L0 Y =20 (42 e (7)
- Freedour'equations for (6) are
N . 2 E ]
i»\i. m:aj‘z‘, 3’!220_(5 ar x:%zj y=?—?:, .....-..‘(b)

”m\d the equation of the tangent at the point m is
NS '

~\J L ogmmat e (9)
W™ y=met+ —

If QD is the perpendicular from @ on PV, it is easy

bo show that QD*=4AS. PV, v (10)

153. Worked Examples, The following examples illus-
trate the theorems of the preceding section.
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% 1.. The tan rents to 4 parabola from a variable poing 7' meet
tht]: f*..a.lllgent at t-hé(:, fixed point /* in & and R 80 that PR. PR’ is
clonstant; show that the locus of iz straight line parallel to the
angent at P .
tdlé{nei'l;r aLhe figure to the dismeter and tangent throngh P as oblique .
axes of # and 7, and lot the equation of the curve b.e

F=der ; A
let T, PH (Fig. 139) be the coordinates of 7. Let T8, TR meet
the curve at ¢ & and let 6, ¢ be the polnts ) \o.\
e o B A\
(m_z’ 213 )’ (ﬁ?g, E) « \J/

o
m{)& 1849,

The equations of TR, ’fe"\{%n%

[ N o

Y=+~ and y=mxLl

Ve y w’

therefore HPL = pp. ,  PR=Z,
N m W

Hence <x!-‘ T'=PR. PR =¢onstant,
50 that M%ig'constant and the locus of 7' is a line parallel to the
Wangent, g P,

E"K‘? If & variable tangent to g Darabola intersect three fxed tangents
'"1{2v 2 ¥y, then the Tatlo ¥,¥,:Y,Y, is constant. .

U}Iﬁitd? veviable tangent touch the curve at £ and refer the figure
Let 1, laieter ang fangent throngh 2 ag oblique axes of = and ¥
® eQuation of the parabola he
¥ t= doc,
an .
et the Polnts of contact of the fixed tangents be

Ql(x'lffl)) Galongr @yl 5).
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The equation of the tangent ab @, is
Hy 1= 2ule @),
Put w=0, then y=P¥,, so tlat

PY, =20 _ %

WY, PF PII_’ L \
Honee _’1_‘;}:]’_"’2"_ 1:;-?'3—_--'-"-’1::3, constatt, A .
¥y PY—PY, gy, RO
Ex.'3. Tangents at Q, ¢' on & parabola intersect in T, and ¢hs, bangents
at a third point P meets TQ, T¢ in R, R’; show that Pl

o

QR RT=TR :RQ=-EP:PR. . )
Using Fig. 139 and the notation of Ex. 1, we lLiave ¢

He) Zi'a and Tl = — N& Y
L \?rgm
, BT B0 - Tl
thmgfore Qi RT=H¢ T{l'&—\r i
R R % o w
Similarly TR I =TI B = - =
Again PR=38pr =™,
“n k)
s0 that “* RP PR = -"".

el

154. Central QO!'I:N\S. We have already Investigated the
properties of ¢dameters of the ellipse. The method em-
ployed dt)es.rbt apply to the hyperbola, so that we shall
now give & whort account of the genersl method of $ 151,
152 as apphicd to the ellipse ; certain obvions changes malke
the digelission apply to the hyperbola.

7\ .

i TrREORRY L.

.2\ , 2
N S LT (1) and y=m'z ... ()

\ D are diameters of the ellipse _
' i £8)

{;{2 + F — ] 3 Mbbmarmeaaaamaea At (

ond if Hen = — b; ........................ 4

' a

each of the diamelers (1) and (2) bisects' chords paralled o
the other, and the diameiers ave called conjugale digmeters.



§ 153, 154] CENTRAL CONICS. DIAMETERS, - 411

Proof. Tet V(£ 1) be the middle point of @, a chord
of the ellipse, of gradient m. The equations of Qg may
be written )
m=F¢+reosd, y=y+rsing
where fan §=m.

It x, 7 are the coordinates of @ or (¥, then r= Vg or V@ .
. x_z f-_ 1 . | :“.\f\\‘.“.

o 2= \/
[£5 b A\
' 4 ’0‘

(£t cos 9)2_'_(7;-1—?" sin )" _ Y,

, L %
o b Ve

Now T Q+ V& =0, so that the %T.lﬁif\(?f the roots of (5)

14 zero; therefora o

a0
feos B peind SN B ensf
S0 @ =g

Also, from (3),

therefore

M;.I/\

o §md s
But tan #=wm and, fl:({]fl‘l (4) ' = —b¥atm;
therefore g\ n=m'¢,

80 that the dia-mc}er (2) bisects all chords parallel to (1)
Stunilarly, the diameter (1) bisects all chords parallel to (2).
\¥; :

«\;s.:
~ - TrroreM 2.
ANO ,
QN y=mx and Yy=mwy
& Wiemeters of the hyperbolo
w4
) @ Y
Cwt BT
dndd 8 ;b2
¥ad if : mm’ ==

ech of the c?i-cmwé,em bisects chovds paralle to the other,
WA they are called conjugote digmeters.
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THEOREﬁ 3.
If P,'D are the points

(@eos, bsin®) and (—asing, beosh)

2 L O\
on the ellipse 2TE=1 R
P, O wre conjugpite senvi-diameters nd \\‘\
Py (;‘D2:a2+i’)2. _ \ \v/
Proof. Let m, m’ be the gradients of C-"P;"CED‘? then
bsing , bhgesnd”
=——— and m= X7 .
e eos P Nt O
. PN
Thercfore T = — e N

g0 that OP, CD are conjugate s@qr:iifdiamt:t-ers.
Also, OP'=glcos?O 412 sm{ 8, CI?=a’sin?6+Fcosd;
therefore CP2$QD3 =i bt

O THROREM 4.
If 0P, CD cwe_{c;(z@)'ugu-te semi-diameters of the hyperbolo
_ $ @y -
\ i

and P iy t}w}mmt (asec B, b tan @), then the coordinades of
D maghbe"put in the form
P4

AN  (oitan @, bigec ),
. ,:?,D_lk?‘e =y =1 ;e -?:f CD? denote
~ *"\,’v a*tan?0+b2sec?,
J then OP - CTP =2 — b
Proof. Lot m, m’ be the gradients of P, CD; then
_btang B |

= - and =
o giee G @
. bsec® bisech
=

Therefore SRt _Btaeel
etan @ “aitan @
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Now {aitan 6, biscc) is a point on the hyperbola ;
therefore it is an cxtremity of the diameter y=m
conjugate to CP, and therefove it ig D, '

Also, CP'=q%sec®0+btan’0, OD%=q? tan®0 b2 sec?d ;
therefore CP— Dt =g2—}2 :

THEOREM 5. ."\:.\'

(1) The equations of the tungent and normal at, tho
point (acosf, bain @) on the ellipse 2P+ 4%B2=1"may
be written 0 the forms D

#—acosl y—Dbsin '9_1. “\
asin@ ~ —boos® O

' ; 7N
tind T—acosf y—bsind_ )
s beos® T asind w)

(2) The equations of the tomgent) and normal at the
povat (asecd, btand) on the. Rperbola a¥fa? —y2hi=1
may be written in the Jorms 5 '

@—asecd ~grbtand_
atan @\ bsecd CD
and ﬁ?—-ilgtﬁéfc __fy—btaﬁ 9=i_

bseef ~ —atanf CD

(See Ex, 5, pé}()?%)
AW

L D

N THEOREM 6.
a8 o digmeler of a central conie which bisects

A7 P
the fzmm & in V, then
oY Qv:  Cpr
~'\; PV VP P
\ _ : : r
where 0D s the sermna-diameter conjugate to CP.
Proof. Tiet ¥ be the point (¢ #) let P be the point
. L poin S 1) - .
: (@008, b sin 8), and let the equation of Q¢ be

x—§ _y-u._ T
—asind beos@ CD
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@ 8in 6 beosd
cp " Y=t T
If (=, ¥) are the coordinates of @ or (); we ha

or m:f...

a2 Y
2=l ~\
L2 famé? yeos @y, &2
so that 571 UD( a i ) O‘N_bz

V@, V@ are the roots of this equatlou in #; 1
the rule for the product of{the roots of .

equation, QT VQ. VQ( £ 2
o= —atg =~ (i)
The equation of P’Kl:’ may be put in the for
\% f Y T .
AWVaeos§ qu{‘) CP’
therefore, sjmilally,

RN
& opT 3-1-3), RUSUUR
But VP. VP =—PV.VF; therelore, from
o) QU _PV.VP Qv _CD
) CIE= P " PYV.VPTOP

THEOREM 7.

If & central conic be referred to CP and C.
conjugate semi-dicineters, as oblique ames of
equation takes the fowm

Y1 o m2 ¥
-\J+ \9 O"
B REE
aceording as the eonic 48 am dhps'c or hype

CP=q, CD=R

Progf. If CV, ¥Q are the abscissa and o
point ¢ on the ellipse, then

V=gt PV . VI =ui—a?;

4
T
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therefore, by Theorem 6,

8 Y
ezt o az‘l'ﬁ:s“l

The tangent at (2,y,) on the cllipse is

bl :
azl_l_(y(y_;l:l A
T mn'=—B%0?, y=me and y=m=z are eonJugwte\ D
diameters of the ellipse. o \ O

156. Worked Examples, The following ex&mpl&s “are
applications of the theorems of the precedmc sect{on
Ex. 1. If parallel tangents at @ and ¢ on a central coﬁlc meet the
fangent at P in T and T, then
PT.PT=CD® and QT.QT es‘@\

where CD and ¢E are the semi-diameters paralish Ext.he tangents at F and
Q respectively. N v

s

Fig. 140,

Pirst, vefop the figure to P, €D as obhque axes of &, ¢ (Fig. 140
¢t the equation of the conic be

OL‘I
ad let the coordinates of Q, & be (@, 1), (—21, — 00

_GAQ P

"1"# 1,
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The cquations of @7, 7" are

g G WL
+Ba and ¢”,+32 1. .
The common &bﬂblbsd of T, #is o. Put x=o in these equations;
t
Ve s BB ang B _y_7
B2 o B . O\
Thercfore, since y=2PT in the first of these and y=P7" 111 the
second, we have a.fter muitlphea.mon ’ { \
¥ o2 - 4
P, PT’.%= - (1 —‘%) = —% O
and therefore, dropping consideration of the sign,
PT. PT' = = O", ¢O
Second, rofer the hgme to CF, O’Q ax abligue axes of 2, ¥ let the
equation of the conic be Jg
ﬁz 7 \l

where w=CE, fi= CQ in th]s case, Let Kbe the point (). .
Then the equation of 7P is \9
By YU
?;f“.%z L.

The ordinate of 7ia 8. Puty=8: we got

ey L@(’_ﬁ e o
i = 1 B or QT 5
The ordinate of 778 \\—,8 Put y= - B in the cquation of TPT

. we get }‘ . ”
&‘%}_’__1,{_‘3 or Q'T’ -—é—l-i—-‘-’—l--

H o AR
. ence K% QT‘QT. =1 B o
0 thagy ) Q7. Q'”’ o= OFE,

X(\;’ If the chord PR of the conic #¥u?— %=1 and the
t%\ nt 2t P are eqoally inelined to the axes and P& meet the axes

and ¢, then OP. Py=CI".
,\:\, " Lot P e the point (wsec f, b tan §) and let the equation of £ B be

\ 3 put 1o the form s—asech _y—btand
wting - —bich 0D
according to Theorem 5.
When y=0, r=P@; when x=0, r=1U%,
Therefore  PQ=CD, ta:n_g and Pg= - OD. i%’
" and therefore  PQ. Pg=-CDE or QP, Py=CD%
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L]

Ex. 3. Tangeuts from a varlable point 7 mest a conie in @ and ¢,
and the tangens at the fixed point 2 on the conie mests TG and TG
in Kand £ i PR PR 1s constant, the locus of T'is a straight line.

Refer the figure to <P and the conjugate semi-diameter aa obiigne
exes of o and  ; let the equation of Lhe conic be

LAl
P i
and let bhe coordinates of 7 be (y,). Ve

The equation of the tangent-par 79, TE is

B )(?_12 e )_(”‘1 w_ )?
(a."’+l{3’2 1 &2‘5"32 1]= -’L2+,8"3 1. (’.}‘.

Pot v=0.; PR uand PE are the roots of the resulting quaﬂ%&tic 1n #
\

Tlence PR. PR — _(mﬁ__.¢)_ 9
bR (o o)

Sinee PR. PR iz constant, «, is constant, so thaf\\rhe locus of Pisa
straight line parallel to the tangent at P. L '

166. Asymptotes. Similar trestuicnt :'may be applied- to

asymptotes, AN .
Put r=¢4rcos§ and\y=y+rsind
m the equations \ o
zt > m_g_yf= ...... 2
@ =l i) and Gops=0 )

We then got th’c’ﬁ}}z;ﬁmtics

fC08%6  singn) feos® nsin®\ & 7 __0 (8
! ( Ej_—.:—;@ﬁ)-l-ﬁ?“( = e ) PEaR S (3)
AN _

and

& _ o
AeoN8  8In’0N | rfcosf ysin @ §2_*?_‘=0' 4
3B 18 ) i3 the middle point ¥ of a chord QY of (1) and
<\}£'QQ’ meel the asymptotes (2) in R and B, then
, VR+ V=0,
80 that, by (33 - feonf ysinf _
8t by (3), 5 =0

d therefora, by (4}, VR4 VE =0
50 tl}:—],‘[’, Wwe h\"lVC .
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THECREM 1.

If the diameter CPV of a hyp@rbola meet the eurve in P
and bisect the chord QQ in V, V is also the middle potat
of RE', the intercept made on QQ by the asymptotes.

If QO move parallel fo itself till V coincides with £,
then we have, as in § 182, Theorem 6,

e \'
TieorEM 2. O
The puvt of the tomgent at P %?lfﬂ?‘(??}’)?f{’d bgt%em the
asymyptates is bisected ot P K7, :
R
THEOREM 3. \4
If QQ, u chord of « hyperbola, ma&*ﬂw asymptotes in
and K, end the tongent at P p@’mﬁiel to QO weet an
asymptote i T, P\%
R RQ= BQ. QR =PT=0D7,
where CP, CD are cow;uga‘ée semi-iometers,

P?“oof Lot R be lih point (£ ») of equation (3); then
£_ 7=0 by @), a@d

&
\\RQ R = ——

\ w W
No@tan 0 is the gradient of QY or CD; but the gradient
KUE ‘by Theorem 4 of §154, is bsee ¢;wtan ¢, where I’ 13
he'point ¢, so that

R cos’d _ tan’p | sin’f  sec’d
...\\f "\': (!.-2 Cf Dz a.-nd .{) 3 T-. 5
A Henee Rg. By =CIn,

Since V' is the middle point of both Q@ and RR (Th: 1),
+ BQ.QR'=RQ. Ry =CI~

When B coincides with 7, R, RQ becomes PP Hence
the theorein is established,
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It Q4" is perpendicular to the transverse axis,
B RY=RQ. QR =01,
if it is perpendicular to the conjugate axis,

RQ.RY' =RQ.QR =042

EXERCISES I.

N N
L Prove that the intevcepts PG and Py, made on the normal ate

P letween P and the axes, are )
Ny

bop and “op. Qe
7 b

2. If #is the eccontric angle of 2, a point on an e]lip%q;i"ove that
tan2f = (0T — B9)(a? - O T2), O

3 If ais the angle which the tangent at & 1{31{33 with the focal
distanee of P, prove that sin o=0/0'D, O\
4 Tuove that cos CPGF=abiCP, OD. s\
% 3 -
5. If the diameter conjugate to CP medt the nornisl at Pin F,.
prove thay IF. PG=RB0Y and PF. Bg=(4?, where G, g are the
Wtersections of the normal and the axEn

B If O, €D are conjuga,te.séf&i-diametem of an ellipse, If €D
lmeets 8P at & and PL is the phojection of PG on 8P, prove that
(1) PE=C4, (2) angle PEy js a vight angle, (3) PL=CBY(d.

T, If the tangent at R bn a hyperbola meet the asymptotes in

L, V) prove thab J°7,= PLECD.
8. 1f the tangen}\\a.t P on a hyperhols is cut by any pair of
parallel tangents ig g, 7%, prove that F’T VPP =0D
9. Tf the t&lgéllt at 2 on a hyperbola is cut by any pair of -
“hjugate digmobers in 7, 77, prove that PT. PT"= (1P,
10. T}:!e\;fssymptotes of a conic are harmonically conj_ugate with
pecttOany pair of conjugate diameters. o
IWNIT i dar s the cquation of a parabola referred fo Obl‘QE"
?{s?s.’”f_ %% inclined at an angle w, prove that the equation of the
~\. SErIT reforred (o the same oblique axes is
/ @+ coswte=0.
12 The ordinates throush a noint P o & parabola of the diameters
}:];—’ Ly thl‘mlgh the exti?emit-ﬁes L, L/ of the latus rectnm are P,
s show that' VP2=qLr’, §P.
1. Prove that, it £ and 2’ are any two points on a parabols, the

N proportiona ] between the di f £ and § from the ta,ngent
) 4 e distances of & an
&P g halr the distance between the diameters through P and P

4

\e
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14, Tf the tangent at @ on a parabola meet.th_c diameter 2V in 7,
prove that TeéL7P 84 .
15. Using the equation QH2=448, PV for a paralola (§ 152), prove
that (ax+by+efi=k{prtay+s)

is the cquation of a parvabola, axr+by+e=0 being the cquation of a

diameter and pr+gy+r=>0 that of the tangent at its vertex, Find N

the latus rectum of the parabola.

N >

. 18, If G is the middle peint of the chord Q¢ of a hyperbold ’w.}]\:h
meets the asymptotesin &, A" and cuts any pair of eonjugate diateters
in K, K, prove that O0R2=0K.0K". - A
17. Prove that conjugate diameters of a 1‘ccLa,ngulay.ﬁyﬁm-hoIa are
equally inclined o each of the asymptotes. &0

%

¥

18. Two tangents to an ellipse are drawn pa,ra.lléi\t.o the normal at
a point P on the ellipse, and the normal is ejuslly inclined to the
axes, FProve that the semi-diameter paralleNte these tangents is a
mean proportional hetween the perpendietdars from 2 on the two
tangents. } ‘\ :

19. Find the greatest value of the dngle Letween a dismcter of an
ellipse of eccentricity ¢ and the normil at its extremity ; and show

that for the eartl’s orbit round theyhn, of which the secentricity may
be taken as 1/60, this angle is ldesithan half a winute of are

20. Prove that, if PG, thétormal at P to a parabela, ent the axis
in G, the length of the chqrd drawn through & parallel to the tangent
at P varies as the foca-l{?istancc of P. -

21, PR iz a chord h?‘a. parabola such that F*# and Lhc;, I:a,ug_ept ab P
form an isosceles thiangle with the axis; prove that £’It is divided in
the ratio 1:3 hypnthe axis.

3
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CHAPTER XXIV.

GENERAL THEOREMS ON CONICS. CONFOCAL \\

OONICS. CURVATURE. _ LS

e
T
< R

157, General Equation of the Second Degreo. {OBetfore
passing to certain general theorems regardingsa conie, we
shall find a general form for the equation dt™a conic, so
45 to save ncedless repetitions of proofs. Egh (z,,) be the
foens and @ eos a+ysino—p=0, the ditéetrix of a conic
whose eccentricity is ¢; then the equation of the conic is

(=2 P+ {y—y, )= x £0§ Corf-57 80 0L — )P
or  {l—e*cos?o ) — 26%sin coff % oy + 421 —egin’e).
= 28w, — 6hp cos o) — By (1, P sin ) + 2,2+ 1,2 — EpP =0,

The general equation of the second deg»re_e, namely

ux?+ 2hay byt + 29 +2fy+c=0,
denoted by f(a, 71" 0" or S=0, represents any conie.  If
h—ah > 0, it represents a hyperbole; for ax®+2hay +by®
has_ then two, realand distinet factors, and the eurve goes
to infinity in’twro different real directions. If i2—ab=0,
1t represent@ya conic going to infinity in but ome real
dTI'GGtiOK?@i; in two coincident real directions), that is, a
Perubglnd 1T W —ab< 0, it represents a comgwhlch glocs
not @ ‘to infinity in any real direction, that is, an ellipse.
. Felave already shown in Chapter XII how to draw rough
\ f0tms of the graphs of f(ux, y)=0. '

Ex b 1 f(%, y)=0 is a central conic, show that the coordinates of its

FENS aro the solutions of ax +hy+g=0, hx-+by +1=0.

Let-{z, 1) be the centro of f{x, y)=0, and shift the origin to the

cee-r(;tﬁ by putting w=£+a,, y=5+y,. The equation of the conic
£8 :

N

A

a£3+2‘a‘€’?+5’f}2+ 2§(aw'j+/a,y1 + @)+ 2yl + by + )4l 3)=0.- (1)
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Think of (£, "?j and (—£& —1x) as the two oxtremities of 4 diameter

of the comic ; then it is clcar {Dat (—§, —%) must satisf ¥ (1), 0 that
@&+ 2hbny + b - 26wy + iy + 9) — 2o+ by )+ F o, ) =0, (2)
Subtracting (2} from (1) and dividing by 4, we got

Elaiey + iy + @)+l + Iy +1)=0. OO £ 7
Now (3) is true for all values of & % belonging to the conie : therefore

ady+hy +g=0 ‘and Ay 4+ by +F=0. '\~>
- : £\

Ex, 2. 'The equation of a central conio referred to the centre as/origin
is found by writing E for x, » for y in the terms of the getond degree
and x,/2, v,/2 for x, ¥ in the terms of the frst degree, Where (x,, y;) is
the centre. ~

Equation (1) of Ex, 1 gives tha equation of the*ghnle reforred to its
centro as orvigin, Blnee azFhy+g—0 and\Vz +by, +7=0, it
remains Lo prove that Mo, g)=3g(# 2} 4+ 2F (58P e
- Now ayfam Ay +0)=0 and g, (Ar, + by F#7=0; by addition we
see that am®+ Ay, + by A e, + Fiy =0 \

X

To cach add 2g(x)i2) +2/ (y, Q0¥ e ;
© then sy ) =2y (7B, 12y 4.

Ex, 3. Find the latus rectum dnd :’ﬁhe equations of the axis and tangent
at the vertex of the parabola 3%

X ERY Y — SR IF FO=01 cerrirrrieirenre el
We write (i) in the f6mn

XN (@ —y=6y -2y -9,
then in the form \ T ; ’

' YA AP 20BN = (LA AN =5, oo D)
Noxt, we\:dc'l;ermhm A 50 that the lines
INF—y+A=0 and 2a(B+ A) 21+ )+ A*—9=0

may'}!e perpendicular.  This gives ?—Ii= —lorA=-2
'S Going back to (ii), we substity fe A= -2, and so get (1) into the furm
) (-??—,V'“Q)2=2rv+2y~ B vvverreraeseaersennssseeofil)
To compare ({if) with ¥/2=~448. AV (§ 125),
wo write it (x__’/"_z)_ﬁ =2 2242y =5,
T2 NS TR

Hence the latus rectum=,/2; the enuation of the axiais ¥ —%— 2:?
and of the tangent at the vertex 9z 4 2 —5=0, The rough form o
this parabola is shown in Fj g 84, p. 220, '
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Fx, 4. Find the lengths and the equations of the axes of the ellipse
_ 5x* - 4%y +4y% — 20X + 8y - a4=0. .. ... .. LSRR (i)
Here a=25, = —2, b=d, g=—~10, fud o= 44,
We first find the centre according to Ex. | : )
ey +.)’ay1 +g=0 and Aw -+ +7=0 give 1 =2, y =0
Applying Bx. 2, we find for the equation of the eliipse referved to

its eentre as origin, 52— 4+ 4afP =64 oo e (i N
The equation of 2 concentric eircle, radins r, is '\:\
R £(i17)
Multiplying (if} by »% and (iii) by 64 and subtracting, we (S;btaiu
E2(Brt ~ 64) — 42t 1 (4r7 — 64) =0, 8 Meveve (iv)

Equation (iv} pives two straight lines through thi\gemmon centre
and the intersections of (i) and (iii ) (Compare §125 Fx. ) When
7 Is equal to the square of either semi-uxis of;b'), these two lines
coincide, and then ~N\\ '

dl=ffrd - B4R —64) or 2EONER 256 =0,
giving PE=18+2V1T or 8= VLT i (7)

These are tho sgnares of the semi-wwes. .
When the two lines (iv) coineide) (v) may bo written

[5(5;'2“-—. Ei".‘:) — QTE'.,}]-':: 0,

X

50 that
when s 18+2~{1‘7’,si§5r‘2 —64) — 2% =0 15 the major axis;
whon #2=18 - 2}2{31?5\ S (512~ 64) — ¥y =0. is the minor axis.

Henee the majoraud minor axes are .
. 5(13+5_\f;__§j\:13,?(9+~,’1_7) and  £(13 - 53/17)=2p(9~A1T) _
or, eferrad té\the x and ¥ axos, ' '
(-?f-ﬁ)fh%Eafi?):g;,(g +V17) and {(w-2)(18-5N1T)=2y(9-~1T).
T}l‘%}'o gh form of the ellipsc s shown in Fig. 36, p. 223. )
1 , ) N n e
@ 5T el ot s e
S JERIVC ; the first, is (43 the second — OF% The student may
*pply the method 1o the hyperbalas of §§ 91, 93. .
BX 5. The aren, of the ellipse whose equation is

P arli4 A +h=1
et Yoy .

fabe the axes throy gh an angls § and pub
#=fcos§—ysin @ and y=Esin f+nycosd.

G.a, .
& 2
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The squation of the ellipse referred to the & and i axes beconies

a2+ 2 En 4 bap=1, O {1
where & =gcostd4+2hsin Goos G4 bsinl &,
A =(b— a}sin £ 008 0 +A{cos? ¢ —sin?f),
H=gsin®f - 24 sin Beos G4 Feostf. 2\
We get (i) into the canonical form of the equation of the ellipsent
we choose A'=0, KoY
25 8™
cor (b—ajsin feos @+ A{cos®d —sin?$)=0 or tan 2{}:0—__{?’—.&}
Equation (i) then becomes ' ¢ *"f;’
@' &4 byi=1. TN RN 1
. {e
The semi-axes of the ellipse are thercfore fl_,ih and the ares is
therefore AN L '
T O
\‘J{(G,b’) ) ‘:\ -

Now (p. 103, Ex, 20) a'b'=«'b' - fa"‘?:;zi‘}x 31’, 43 iz easily verified.
Therefors the area of the ellipse '[S:W;':\J(’X{Ib —~ &)

Ex, 6. Prove that the equation efig conic referred to the tangent and
normal at a point a3 axes of x and y'may be written in the form

¥ %884 2y +by*.

Also show that, 1f through @ given point on a conie two lines at right
angles to each other hgﬂmwn to meet the curve, fhe line joining their
extremitiss will bass fhrough a fixed point on the normal,

Tt a2 2 oy + Byt 4 2004 2 Fy + 0=0
be the equatiafiNef the conic. ' .

The conicpasses through the origin ; therefore ¢=0. .

And thefangent at the origin is y=0; therefore r=0 fwice gives
the roogtedOF 4274 20 =0, so that G=0.

Hengéthe eyuation of the conie takes the form

O\ A+ 2Hry 4+ By + 28y =0

e y=(— AJ2F)a?+ 2( = T2 F)ay +( - B2 F)y,

) which is of the given form.

QO

In the second part of the examyple, refer the figure to the tangent
and normal at the point as axes of 2 and # 3 let the equation of the
conie be

w

y=ax?+ Qhay +by?,
and let the equation of the line joining the extremities of the
perpendicular chords through the origin be

fe+my=1.
. Then y{lx+myy=oot + 2hay + ly?
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is the cquation of the pair of perpendicular lines through the origin,
Sinee they are perpendicular i
@+ b—m=0,
go that lz +my=1 may be written in the form
. Lo tH{a+B)y=1,
which always passes through the intersection of z=0 and (a+By=1,
that is, through a fixed point on the normal.

Note. Tf a+5=0, the conic s a rectangular hyperbola, and m =0/
Hence the pavticular case; I through any point on = rectangulars
hyperbola be drawn two chords at right: angles, the perpendiculag Tet
fall from tho point on the line jelning their extremities is the tangent
to the enrve ab the point. N

\ .
158. Forms of the Conic. We have taken«"o‘};\e general
equation of the second degree, viz. \ '
et ey + P+ 2+ 27y a—:'ﬁé’ﬂ ............ (1)
to represent a conie. It follows thatnEhe term conic there-
fore includes a pair of straight lines (3hich may bo parallel
or coincident) as well as a circle, pdrabola, ellipge or hyper-
bola. And this is not surpriging, for if the hyperbola
S -y =1 <X 15 traced {otvarying values of A between
Dand 1,3t will (difior very hittle from its asymptotes when
As all but 1, s0 that the Oyperbola may be imagined to be
“syuashed ” into g palys of straight lines which are its
ssrmptotes; the hypoebola is said to degeneraie into these
s, Sinilarly, , parabola may degenerate into a pair
of parallel strajoht’ lines. To see the significance of the
term cone if, tefined by equation (1}, we must start from
and inveShigate its difforent forms, We shall give only
the OULLT@ BF the investigation.
- #520b, we can shift the origin to the point (x, ¥,)
by Tultiing e=C+a,, y=n+y,, where az,+hy+g=0 and
sy + F=0, and (1) will then tako the form S

C apy 2y + Iy = ST — 02 ZbF = B2 9 |

B —ab
tlisT}%e _eXpression abe+2fgh — af? — by —ch?® is called the N
Ic;l m;na.nt of equation (1); we shall denote it by D.
sent, *=0b and =0, we see from (2} that (1) will rcpre-
fwp we,te’r.gecting straight lines. o

™\
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If h?4=ab and D==0, equation ( 2} may be put in the
form ' : '
- : AEF2HE Byt =1 (3)

We may, by rotation from £ » axes to u, v axes, as m
§$157, Ex. 5, bring (2) or (3) to the lorm . "

WP+ B = s o)

H y=0 and o, 8 have the same sign, then L0%nd
v=0, so that (1} would represent a point, for exauple one
of the limiting points of a system of coaxal ciptidg

If o <=0, we sec from (4) that (1) may he/woucht to the
canonical form of the equation of the~gircle, ellipse or
Lyperbola. v

3o far we have supposed that b2 —aPe=0. If 42— ab =0,
then (1) will either take the form, {xs\\m §157, Kx. 3,

(o By )t =Bl — 0y + 8, evoorrones 5)
80 that it represents a IJGS?"@?%}ECL:.OI‘ the form
(@FBY + 7=, v (8)

s0 that it'represent;&.a‘pc;*'w of parallel lines.
. PAN .
159. General¢Theorems. Wec shall now give the mam
theorems regarding the general conic whose cquation s
& 0+ 2hay + by + 200+ Uy =00 o (1)

PR TIIEOREM 1.

I from. the point P 1 3 @ line of gradimt tacf

202 drawom to meet the conde (13 in Q and R, then PQ and
(O PR ave the roots of the following quodratic vn v :

ﬁ(a'cosﬂﬂ-i— 2} 51 £ cos B4 b sin@)
+2r {(am + by, +g) cos 04 (hae, + by, +F) sin 8}
+a,?+ 2 Wy, +by O 202 42y e=0. e (2

"This equation is obtained by putting =+ 608 g
Y=4,+rginfin (1)
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: TrEORENM 2.
The equation of the tungent ut the point (&, %) on the
conic {1) is _
asiy +h (g, FOY) Yy +g(e-te) iy +y,)+e=0. (3)
By expressing the condition that both roots of (2) are

zero, we get the value of tan 8, the gradient of the tangent
at (;, y,), to be \

it Hhy g N :
iy by, 4 F O\

and the equation of the tangent is then y—y, =(m—a§)‘£an“6,
which may be put in the form (3). AN °

"
TurOREM 3. 9

The locus of the middle points of chords o the conic (1),
which hove u common gradient m, §&/the stradght line
whose equation 4s o) '

©ax-+hy +g—f—m(}"am+j")y:-j=f.)=0. ............... €)]
It m=tan 0 and («,, 4,) is a0int on the locus, then the
s of the routs of (2) is 7erg,\¥o that

(a2, + by, +g) cos 0ECha, + by, +f)ein §=0
or -+ h'yl +§g F (b, + byl +7)=0 3
bence (4) is the eqiyﬁidn of the locus.
: O THEOREM 4,
If m, mNG the gradients of « pair of conjugate
fE'Lt'&??'wie?s:q(e’Jae conic (1), then
' 2:\:.“ a_‘._k(m_j_qn"),.‘. bm?‘n’: [ R T (D)
F(?f"kccordi ug to (4), m'= —(a-+mh)/(h-+md).
o) TUEOREM 5.

\;."'T{lge C}l_ﬁ?"d Qf the conie (1)’ whose middle Poiﬂlt 18 (xlr yl)’
8 given by the equation

(@ ~ &) (am, +hy @)+ (y—yy) (hez, +byy +f)=0....(6)
_ Pag tan 0 =(y — y, )z —x,)
1 the investigition of Theorem 3.
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- rnroREm 6.
If the line joining the point T(e,, y,) to the point U, y)

meet the comie (1) an P,, P,, then the volues of the ratios

TP|P\U, TP/P,U are the roots of the Jollowing quoadratic
A '

O\
N¥(aw? 4 2hzy + byt + 292+ 2fy +¢)

+ 2 ao, + by tagy) + by +g@ta) Hf (y+y e

+ (aw, 2+ 2hay, + by, 2+ g, + 2y, +c) =0 - N AT
This is Joachimsthal's Equation, and is foundy procceding
exactly as in § 146. _ A

THEOREM 7.

The equation of the pasr of tgents from the point
&1, #) L0 the conie (1) o AN
1+ 1

(ao®+2hay + by + 29+ 2fy +’c)(’a-;éi‘4 + 2heey, + 29w,

N o+ 27y, +¢)
= {m1+;’*(wyl+mly)‘b§yg1+g(x+ml)+f(y a1+l (8)
- Proceed exactly ag<n § 147,

Note. The pgér;\of tangents from a focus of & conie

: satisfy the eirfefildf conditions, namecly, the term in 2y 18

"\./
S

\:

absent and the coefficients of 2, ¥ are equal.

\g TuEOREM §;

7, }?f{é)}fdr of (@1, 4)) with respect to the conic (1) is given
the‘equation

b
N

AN AR @Y+ by, g (o4 ) R (4 ) +e=0. 0)
;‘.\’ - .

Proceed as in § 148,

' THEOREM 2. .
The-asymptotes of the conic (1) are given by the equation
0a® + hay 4 by® 4 2gm + 2y + ¢ |

y et 2gh—af—bg*—h?_ 10y
. h*—ub
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Ii ¢ be added to both sides of { 1.), we get
ax’+ 2hay + by + Qg 4 2y +e+e=¢.

The left-hand exprossion is the. produet of two linear
factors if '

ab{c+ )+ 2fgh— af? = byt — (o ¢ Yh2=0,
o uhe+2fgh —af?— byt —chs
L= — .
Ar—ah
But each of the factors equated to zero gives an asynip’

tote, hence the product of the faetors equated to ZETQ.gives
both asymptotes in one equation, and it is equation £10).

that is, if

¢ :
160. Confocal Conics. A system of central_coﬁix\zs having

their foci in common is called a confocal systenh ,
The general cquation of a system of comics.eonfoeal wit

the ellipse w?/a® 4 »%b2=1 is easily seer;’.i‘{x)ibe _

a2 ) ?’;2_ _A\N
EZ+K+ E)T'!‘ ?X_ 1D 2T berereeerernen (1)

where X is a variable parameteny because

\

(f.,s‘f—}-h)-(bz-]:;\:}:' a? — b2 =a’?,
%0 that the foei remain Hi&3d as A varies.
The following theorins are of interest.
L™
¢  THEOREM 1.

Through oubty point in the plane of the ellipse
G 415122 b0 confocal contes cam be drawn, one an
ellipse an e other o hyperbola. . .

Let ch the cquation -of a confoeal through the point
@, yl»} 3 then to determine A, we have the quadratic

O M4+ S ady t— A+ D22 =0 (D)

) Now the graph of the lefi-hand expression-is a parabola
Whose coucavity is upwards, and which crosses the A-axis
uee the value of the expression is (a®—b%)x,? a positive
Tuantity, when h = _ a2 and (12— a?)y % a negative quantity,
hen X= — 3% Honee the roots of (2) are real, so that two
el confocals pass through (a,, %,). Kurther, if A, and A,
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are the roots of (2), both a4, and a?+X, are positive,
but b*£A; and 52+ 7, have opposite signs, so that one
confocal is an ellipse and the other a hyperbola.

THEOREM 2.

The two condes confocol with the ellipse a®fa®+Ri=1,
and passing through any point (@, y,) cut at vight angles,

For if A, A, speeify the two eonfocals, we have | O\
R _”’;12.__1_L12 O
R N R R SR WA

a
£

or (A —X\ ){__. & + ¥ s 1=0
P @ EA Nt A, T (PTEAJAEPA,))
Sinee A, —A,==0, we get the condit-iQn that the tangents
at (2, y;) on the confoeals, namely /N )

oy T, WY ﬁ'_y I g
Ern, T G e,
are perpendicular. Y

ay

Fx. 1. Only onc of the comies’ of the sysiom confoeal with

A Py =1
can be drawn to touchd iven line.

Fx.' 9. Variablepataliel tan gents to a¥e?+»408=1 woeet a4 commal
perpendicular in ¢%and &, which again meets a parallel tangent to 2
confocal in 2 \phove that PQ, Pii 1s conztant. .

Hx. 3. (Prove that thoe locus of the points of contact of Ifa.ngE!fIﬂjS
from azfiged point to a system of confocal conies is a cnbie curve
whick“passes through the point and the foel of the syster.

B 4. Prove that #i=4A{x+A), where A is a vaviahlo parametel
Argprosents u systom of confocal parabolas.

”\; «/  161. Preedom Bgmations of Confes. Let
) g Wb _aPbird Q
Tt min Btmitn

be freedom equations of a eurve, then the curve is a (’ml.lc{;
because the curve given by these equations meets any lin
Az By+4-C=0in two points. (Sec IV, p. 290.)
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If 2+ mit 4= has real and distinet factors, the conie goes
to infinity in two real and distinet directions, so that (1)
represeuts a hyperbola if m?—4in > 0.

If 1#24+mi+n has a rcpeated factor (f—a}, in other
words if [£2+mit4-n is a perfect square, the conic goes to
infinity in one direction, so that (1) represcnts a parabola
if m2=4in=0, In this casc, by putting ¢ for 1/(f—c), we
get the form used in Ex. 2 below. N

Tf If2+mt+# has imaginary factors, the conie is a closed\ *
curve, so that (1) represents an ellipse if m?—4ln <0\

L 3
Ex. 1. Tind the asymptotes of the conic whose freedom dyuations
N
Are g2 —t41 BB AN :
= . = R\, & Mo (i}
CDe-2y YTa-Da-9
Let e dany=1 be an asymptote ; then fx-+my =, fouches (i) whers

&, y are infinite, that is where =1 or {=2. &
Heneo (28—t 4 1) +om{t+ 3¢+ Q)f(tfh(t‘g)
or 22 +m—1)— (1= Bm— B4 GF TR —2)=0 i (i)
R

is a quadratic in ¢, whose roots are t="Lifwice or r=2 bwice.
If the roots of (il) are £=1 twicg, T8

Btm—1l=L{+2m—2 a:’na “1_am—-3=2(2l+m-1),
s0 that 7= —3/4, m=1/4¢ and{the :;symptote is 32—y +4=0
If the roots of (ii) are 1€ twice,
I —3m -3/ Q’}w-’-ﬂ and [—Sm-3=4(20+m—1)
50 that {=12/35, mx — 1;’:'3 apd the asymptote is 12y = Fy=30
Ex. 2, Proqe;ﬁhﬁ,t the equations
(O zoat4bite, y=aftbittd
I‘ept'eseny"a;i)m*abola. whose latus rectum is

O\ {ab — E%”
N _ (@+atF
O Bolving the given equations for & £, W& find
) ’ ‘ ’.
v S R LAt s
- ab —a'b alf —a'h

50 that the constraint equation of the locus of (x, #) is’ ’ "
(o'w — ay+ac’ —a'c)2=(ab’-a’b)(b'.r-—by+bc #bc)&» t )
. , ! —q'e=0 is & dlameter o
and thi ts rabola; @z —ay+ue —«f o
the eml‘ierg,lr):;fss’z-Izjg—&bc’-b'c=0 i the tangent at the extremity of
the diameter.
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Comparing eguation (i) with the equation
QI2=148. PV
“of §152, wa see that the Tatus rectum 445 ia

ab —a'by ..
(a.‘,w;zv";"—]-b’z. sin 8,
where 8 is the angle betweon the dismeter and the tangent. e
Now \
b’ —a'b . ull’ — b A\ o
fan 6_&bm’ and therefore =in ﬁ—ma:—bz_,) «,”.\
30 that the latus rectum is @’_““_5’2" « \
(a2+ arﬂ)-: ¢ s,:".

Ex. 3. Prove that i e,
z=gcos -bain@+e, y=a cos G4 h"’si} g
are freodom equations of an ellipse. N\ ) .
Solve for cos § and sin 8, then square and. @d. Ov put 26147 for
sin § and (1—#3){(1+1%) for cos 6. ¢*
Ex. 4. Draw the conics spocified Linthefollowing freeduin equations,
and state the nature of each : \J

N/

. 9 p N ; ,
(1) 2= 3/:'1t;gi o\ () w2 5242, y=30Hi-2s
e 200149 @S2 . Aol | o348

({fi) == = (V) #=g > Y= Fqii

RV /NG

Ex. 5. Prove thgﬂ?,\the gradient of the tangent at the point £ ov

the parabola \\(8;’@{2_’_%5,_}_6, y=a 2oL

is ('t 4+ b’)f(q;:—l—t b), and find the value of ¢ for the vertex.
O EXERCISES LI
l.(l‘}ace the conies specified by the following equations, giving
bhé%xés and their equations when the eonic is an &llipse or h}’P‘*Fb.{}]_a"
ahdthe latus rectum and the equations of the axis and the tangent ab
_abke vortex when the conie is & parabola,
WO ) 24t =2uy gy (i) Gat—ay— -+ Yy +2=0;
\ ) (i) Ba? — 2oy =23 ; o :
' (iv) 1322+ 28y — 8% — 102 — 20y 4-61=0;
(v} Tof—d8ay — 75"+ 1102 — 20y +100=0;
(vi) 9248y + 324+ 20+ By 4+ 4=0;
(vii) Bof —day + 82 — 62— 12y —36=0;
{viii) 947+ 16y* ~ Sdiey - 502 — 100y + 225 =03
(ix) % ~dwy—5r2+ 6y 4422 — 63 =0,
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9. Trace the vinie
r :?. _ A ff B “ii’ . )
I:'-":-l_"r’ [x} B (rr. T)(b_-l ’

showing ite relationship to the lines w=0, y=14, afetyfbe=1,

3. Prove that Bl conles

phogft— ety +2=0, 2730 4o by +4=0 '
ent orthogonally at el of Lhe four puints of intersection, A .
2 AN

4, Find the eondition that the lines rc";:2+9?¢’xy+b’? 2() may Lé W,
conjugate diantebers of e conbe et By + == 1 oy

. N/

Prove that the cquation of the :-qui-conjugzlte dianietery is ”:‘,
(o — b+ 208 b 2h o 4 D)y (B bt ANy =0 R
b, Find the divectiix and comdinates of the focus of thﬁ\c;}jﬁic
A g g — B Gy —4=0. \;

6. Prove that the direcctrix of the parabola 8
S=aff 3o, w8 L
is R Ny, STy % )

T. Pind the latus 1wectwm, the l;e_luutiup’of the direcliix and the
equation of the tangent. ut the pint ¢ o the parabola

2= R et h, ,;g:%zri”ocus ot 2ot 4 b
8. If the equation of w conie inQ®
o ety
Pove {1) that the squares of the semi-axes are given by the follewing
Luation ; 1 \S\"' .
AT ((( + fJ)-l—f:‘?J — k=0 H
nd (2) that the pogi{ig;ﬁé of the axes nre given by the equation
O \
I (fl’, — ] ,||J‘+ fryg =0,
i"\'" Faad
al 9 It L%“‘ﬁe'lmfl' (ot 2 ey 4 By = ) vepresents the asymptotes of
1}'IJefhP“L1: find the cognation of the pdi of axes,
H%?(*Eind the eition of the conje passing through the ortgin and
“JK‘ AE the same TYmptoles ax the eone
\

@b iyt g 4 2y o= 1),
1L Prove thyg

the latus rectum of the parzhola
(oer = B ¥ 4 2 4 2o don =0
2(ec,/ - By (et + BAE,

& equation of the axis is ecw+ By + A=0, where

i
) A0 prove that th
=g+ g7 Mo+ 82
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12, Prove that the gradient ai the point.(x, 3) on the parabola
(s + B+ 2o+ 9fy 4 =0
is — (@t oy +g)(wfr+ B2y 1),

and that the equation of the axis may bo formed by equating this
expression to /.

13. If m is the gradient at the point P on the conie
axt 1 Bhoy 4+ 2+ 2gx 42y o =0, '
whose centre is €, prove that the equation of 0P is
ax+hy+g+mhz+by4-)=0.
Deduce that the axes are given by the equation ‘
RXi—(a-B)XV-pVi=0, LV
where X=ast+lhy+g, F=hotdyif \%
14, 1f a conic is given by the general equa.tiou.{)f.ihe second degrees, the

eccenfricity e is given by the eguation ¢*
r (a‘_b)2+4h2 ”: }
er4 Bt (ef ) =0.

15. Prom the fact (§ 159, Theorerg{'i;Note) that the tangents to a conic
from a foens satisfy the conditionstfar 4 circle, prove that if £{x, y)=01s
the general equation of a con.i.c,,tl{e Toci are the points given hy

x-y XY
s " n T
o\ .
where Xsax+hy{§g'\’*.§?zhx+hy+t‘.

162. The Rectangle Theorem, The Rectangle Theorem isa
general thieorém for the conic which has many applications.
If twdwariable seconts of o conic whose divestions are
ﬁa‘e%cm the conic in P, @ und P, @ ond intersect in 0,

they OP. 00

48 constant Jor all positions of O.

We shall use the general equation f(w, y)=0 or
aat+ 2hry + by 4 200+ 2y +o=0 e O
for the equation of the conic.

Let (£ 9) be the coordinates of ¢ and Ict m={+reos 4,
Y=n+rsinf be the cquations of QLY Substitute these
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values for @, ¢ in (1) and arrange the result ag a quadratic

in 7, thus:

¥ cos*0 -+ 24 sin @ cos O+ b sin’0) _
+2r{eos O(af+hy+g)+sin OhE+by+F)) + L& m=0.2)

(11, O are the roots of this equation, so that

- o JE ) N\
OF. 0Q= acos?@ -2 sin Beos B+ ban’d y 289

Now let'w=f +7cos @, y=n4+8in@ be the eguﬁﬁibng
of OF'Q); then fem O
¥ _ ( 3 '}) m\\ . . 4.
or”. og T acos’@ +2hsin § cos O Phamg ()
From (3) and (4) we get e\

0P 0Q _ 0 cos™® 42 sin 630+ b s 5)
OF . 0~ "acos?6+2h sin Gos O +bsinig

Now the divections of OLRQNOP'Q) are fixed so that
band, tan ¢ heing the gradients of 0PQ, OP'Q are fixed;-
hence the right<hand sidd of (5) is constant, so that
OP.0Q/0F . 0@ 1s alsolGenstant,

e

163. Examples onthe Rectangle Theorsm. We shall now
work some exaniples on this theorem,

Ex L 1 vg'mdn ordinate of the diameter PGP of a conie and if CP,
0D aze COnjugRte semi-diameters, then :

\O o _ope

O PV, VP opt’ _
=X 07 op (Fig. 119) meet the conic again in @, D' ; then DOD,

: g_‘l-’Q"ha\-'e the same direction, and POP, PVP are in the same
3 reCon, Therefo e

9. vg _¢pn.cw or: _ O

VETPTer ep O provET fem

) EESD?EPBI' sign holding for an el lipse and the under sign for a hyperbola
oo t‘mg b0 our uge of 02 for the hyperbola (§ 154), These

Jtions gre ghe equivalents of #%/ul+pt=1, c¥ol-gtF=1 of
9% Theopen, 7.
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Ex. 2. Let P, PQ be two chords of a conic intersecting ab 0; let op
and op, CD and CD', LBK and L'SE be pairs of tangents, semi-diameters,
and focal chords parallel fo OPQ, OP'Q’ respectively ; then

OP.0Q op® CD* SL.BK IK
0F.0Q op® CD? SL.8K LK
-

Let OPG, dP’Q' (Fig. 141} move, keoping their directions fixed, till ,
P, & coineide at p, and P, § coincide at @, then € will coincide
with o; OF. 00 becomes op? and OF. 6 beeomes op®  Hencpaby,
the Rectangle Theorem 0P, 0G/0F . O =op®op™.  NH

o N\

§“\ : Fie. 141,

,‘\N aw let ') move so as to keep it direction fixed till it coincides

2with the 07-line, and let P§ move into coincidence with the CZ¥-liné:
“\\.J then O becomes € so that G017, 0Q/0P'. O = CDECT™

h
3

It will be clear that by maving ¢ into the position of the fncug 55;
OF. 0QJOL. 0§ = 8L . SKISI/. SK. Now 1/SL+1/SK=2]l (B o
where / is the semi-latus rectum ; honee 8L . SA/SL . SK=LK] L

Ez. 3. To prove the theorem, for a parabola, that
QVE—48P. PV,

by using the Rectangle Theorem. - al
Let the tangent at P (Fig. 142) meet the axis iz T.and the par’

led
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throngh @ to tho axis in R; let &, @ e the feet of the ordinate and
normal at 2% P -
L+ R LG VB
Then RG. Rw TA.Tx ™ pv=7g’

because R/ Por =1, since £Q and T4 are parallel,

O
&
T AS N G _ v
- -Fo. 142, 0 NY
But TA=ANF und ST=S8P=36, therefgr’e:;\ N
. PP—TN.7G—=274 25P, "?I:'“’.%?‘J‘Q-SP.
Henee %2 —48P or Qi:” ~48P. P,

N 3

Bz 4 Discuss the applig@tion’of the Rectangle Thecrem to the
asymptotes of u hyperbods, N : ' -

Let CPV in Fig. 127 hela Hiameter of a hyperbela which biseets the
thord 99 at ¥, Tet & Jtangent at P and Q¢ meet the asymptotes
in P 7 and £ B and 18t ¢'0 be the semi-diameter conjugate to CF. -

Then 078 meets, bl curve at infinity, so that

pRal/ o1y
: gdz% or PT=0D since Teo [0 =1.
Similﬂ-ﬂé’,z?i""=02), aud therefors the tangent 77" is bisected at £.
’\ 1{@ R ) HET L
o\ BQ. Ry e i O

B R s o AQ.R=1TP=0D -
S8nce T i hisected at P, R is bisected at ¥, so that also
0. QR = PT2— g1

. Ex5. 1t conte cut the sides B, €4, AB of a triangle ABC in P, and
» O ang g, R, and R, respectively, then :

(B (P2 (0)(Q) (B (Ry)=1,

WheTe (P,), ate, stand for BP,/P,€, stc.; and if a conic touch the sides of

Algleat b, q, R respectively, AP, BQ, CR are coneurrent.
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If A, B, € have coordinates (m3,), (#39), (#3¥,) aund the equation of
the conie be f(#, #)=0, then
BP| BP;_ flzy ). €. 0@y flmg y), AR AR, _ flay, p).
OP,. 0Ly flom, )" AW 4@ flw, )" BRBR, flan, pa)
hence, multiplying up, we get (P NP (@) (@) (£} (L) =1
If P and £, ¢ and @, R, and K, coincide at £, ¢, &, the conizs
touches the triangle at 7, ¢, K, and \
B2 o AR 0 BP OW A& Oy
P gar REE-- N POTQARET T AN
Tf the nepative sign holds, P, ¢, £ are collinear bx%lﬁ'éhclaus’s
Theoremn, and & line would cut the conic in three gpinfé; which is

BP 0§ AR . . A
T6 0i RE— +1,and .1 F, BQ,QR are coneurrent

impossible. Hence
by Ceva’s Theorem.

A\
164. The Intersections of a Conic,a8d a Circle. Circle of
Curvature. The intersections of ‘& 'eonic and s circle are of

»

special interest, and their propettids are easily investigated
by means of the Rectangle Jheorem. Let a circle cut 2
conic in P, @, P, @ (Fig. 1%%3), and let PQ, P'Q meet at 0.

\) o ' ' . 143,
Let CD, O be semi-diameters of <the conic parallel to
0PQ, OP'¢. Then '
or.0g oD
OF . 0 oD%
But OP.0Q=0P . 0(; therefore CD=CD. HenceCD
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¢ are equally inclined to the axes of the conie, so that
0PQ, 0P are also equally inelined to the axes of the
conic. (In the casc of the parabola, or indeed any of the
conics, we may subslitute the ratio of parailel focal ehords
for CDA/CD®, with the same resnlt.)

Hence the importint theorem: 7The lines Joining the

ports of enlersection of a conic and a eircle, tuken in puirs,

are equatly wnclined to the awes of the conde. If the centrest

of the cirele lies on the normal at P to the conic and tle
eirele passes through P, the cirele will toueh the eonie at P
the line joining the pair of intersections at P becomes $he

tangent at P, so that the tengent at P and the Bre QR

Joining the other points of intersection of theeircle and
conic are equally inclined to the axes. If thi\aiitre of this
eircle move on the normal at 2 11 @ also cq'nicides with P,
then three of the interscctions of the éircle and conie
eoincide at P, and the eircle and conipd t;%; elsewhere at R.
In this case the tangent at I’ and thé gommon chord PR of
the cirele and conic are equally inelined to the axes of the
conie (Fig. 144). This circlesis the circle of curvature ;
1 lies closest of all eircles to .tl'{e'conic at P; the eentre and

rading of the circle are thé“eentre and radius of curvature,

Hence the following important theorem: 7o construct the
ewrcle of curvature af % point P on a cowie, draw the
tongent P gt P (% 1443, amd through P draw o second
ling culting the @enic again in R so that P1 and PR

P o isosceles, triongle with the amis of the comic; the .

Cirely towchivhy PT ot P and passing through R s the
aircle of oppainre. PR is ealled the (common) chord of
curva,tulaiaj;‘P on the conie.

Q) .
165, \Worked Examples on Curvature. In the following

e investigated.
Ex 1 ppe length of the common chord of curvature at a point # on
" olipse iz 20D sin 26, ,
24 the rading of curvatire js c—?: |
at{;e.t £ (Fig. 144) be the chorda of curvature and PP the tangent

gHamples the properties of the circle of curvature of a conic

N
R

W
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Then, according to Theorem &, §154, we may write the equation
of PR in the form

z—acosf y—bsin 8:-:"—'—:&, Y )

gsint  bheozd OD
so0 that z=alcos P+Esin #) and g=b{sin f+Liecosd)

If &, y are the coordinates of A, then a%a? L% 0¢=1; therefore * &>
(cos(ﬂ'+irsiu6)2+(s‘m fd-keos By =1, :.\’*\
50 that MHadbsinfeos@=0, or k= -2sin26, 2N\
\.
by dropping the zero value of £ . ,\'}‘ g
* Therefore (,:TF —2sin 29 or PR=20D T%\ '
AS)

.\ - C Fra. 144,
~O :
)

\

Let PK bo the diameter of curvature; then
%=sin PER=sin tPf=sin 2PTC=2sin PTC. cos PTC.
Mow, from equation (1), sin PT(f and cos PTC are pumericatly equal
to beos /0D and e sin 8/CD respectively, and therefore

PR _beos@ asin B_absinQﬁ_

PE-2Ch oD T O
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But ?R=2CDs#n :?-(J‘.; therafors
2010
¥ _— -
K= b ’
or the radius of curvature is equal to CIP{ab.

Tx ¢ The chord of enrvature through the centre of the ellipse is

20D? ¢
P -
Let POT (Tig 144) be the chord of eurvature through ¢ and PK\“\.'
the diameter of curvature. ’ e \
Then PU=PE cos KPU =R sin POD, A\
) 4 ‘~‘
But PE=200ub and CP.CDsin POD=ab; sy
. ¢*{
therefore . Pl— Qgﬁ_ d \\:\

s::s'” K
'S .

N\
4 . F1e. 145,
Daf: };' 3. ‘The length of the common chord of curvature at a point P on o
i 4:1,01& 15 4PT, the length of the chord of curvature parallel to the axis

30d the radius of curvature is 28P2/SY, . _

et 22 (Fig. 145) be the doublo ordinate through P'; then TP is
"gent at 7. Tet PR be the common chord of curvature; then
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TP is parallel to tho chord PR Ience the dinmster trough £
bisects PL, so that PR=417". . .
It PI7 is the chord of curvature parallal to the axis, the triangles
HPR, 8PT are similar ; but PR=4PT, thercfore PH=450
It PA is the diameter of curvature, the triangles APH and PS¥
-are similar ; thorefore

PE_PH 482 "
sp=sy o PE=gp Q
166. Contact of Conics. Systems of Comics. The oikcl§bf
curvature is an example of one conic having three-point
» contact with another, We proceed to discuss, this and
other kinds of contaet of two conies. N 3

P\ TFio. 146,

Le{','ﬁ stand for aa?-+2hay +by? 4 2w+ 2fy +0, so that

S=0represents a conic, which will be referred to as the conie

KN Let P, L, M be linear functions of @, 4. 5o that P —-%,
NTo=0, M=0 represent straight lines, which will be referre

~\J to as the lines P, L, M. The intersections of P with
N/ L and M will bi denoted by (P, ), (P, M). 1

| Let I, and M be tungents to the conic S, let P be the
thord of contact, and let us consider the eontact of §=0an

S=NLM, oeeieeieeeeeeerenannes (1

where A is a variable parameter. . e
The equation (1) represents a conie, since it is of
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second degree in @, 7. The solutions of §=0and §=) A
(1) regarded as simultaneous equations are the same as
those of S=0 and L =0 together with those of S=0 and
M=0. The sclulions of S=0 and L=0 give the point
(P, L) taieg, sinee I touches 8 and the solutions of S=0
and M =0 give the point (P, M) twice, since M touches 3.
Henca § meets (1) at (P, I) twice and (L, M) twice; so
that S and (1) have L and M for common tangents: § and( )
{1} are waid to have double contoct. The dotied curie
in Fig. 146 represcnts (1) PA
Again consider the eontact of =0 with the conigy\

\ \ 5 Fra. 147,

*

The aimui’é}:feous solutlons of §=0 and S=x.PL arc
those of\ 850 and P=0 with those of S=0 and L=0;
thf first of thege gives (P, L) and (P, I), the second gives
L, B¥wice. Hence S meets the conic (2) at (P, L) thrice

...fmd\fdt (&, M) once. S and (2) have three-point contoct

\ﬁ'U’L)} they are said to osculate at (P, L); the circle
1 curvature is an example, The dotted curve in Fig. 147
Tepresents & conie oseulating 8 at (P, L).

W 1 Fiud e eguation of the circie of curvature at the point § on

elipee x¥faZ L ydipu—q,

Dth]it L,-be the taugent to the conie at, § and lot 2 be the common chord
b arele and conie.  We know that L and 2 arc cqually inclined



N
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o the major axiz and that the equa.tions' of L and £ may therefore be
written in the forms

Goos G

w_,‘_.f‘/ E-31-1-1—{9:1 and’ y—bsin f=— n g(x—rz.cos &,

o a5l
or breosf+aysin@—ab=0 and becosH— oy sin §—abcos26=0, )

Substituting aceordingly in (2), we get

43 N
z;: ’}%— 1= A{bx cos & — ay sin §—ab cos 26) (ba cos §+ay sin §— ghuifl)
. . 7NN “
as the equation of a conic having 3-point eonlact with the ¥Mipso ot
the point & )

It remains to determine A so that equation (1) @by represent a
circle. Now (he terms in a2y vauish from the coudcivn whatever be
the value of A ; the cosfficionta of 4% and #® areggual if

it e N S SN
RN 0 sintf -+ 52 costl
Henes the squation of the circla of cm‘i{}bul’e in got by sulstituting
in (i} the value of X given in (i} ; we@st*finally

2__ B B
x.z_i_yz_ga_._b..xcosriﬁ—l-ﬁ.ﬂ'“ b
@ a\ Y

ii — Ab? cogtf =_% +Aatein®d or A=

Ly sin®h =.(2 b2 —afyoos?
(20 - B sintf

Next consider the contbact of S=0 with the conic
A=A P, e 3)

The simultahgous solutions of S=0 and §=A.P% are
those of S£Q and P=0 twice over, that is (¥, L) and
(P, M) twige over. Hence (3), like (1), represents a family
-of eonies\linving double contact with Sat (£, L)and (P, )
The dotted curve of Fig. 146 would also represent (3).

ABx’ 2. 4 point moves so that the tamgent from the point to & fired
teircle hears z constant ratic to the perpendicular from the poing o 8

¢\ ‘fized line; show that the loeus of the point is & conic which touches tll:
\ circle at the points of infersection of the line and the circle, and tha

the eccentricity of the conic is the value of the constant ratio.

- Let #%4-32=+2 and =1 be the equations of the line and circle, a‘}lld
let A be the constant ratio ; then the defining condi_t’;ion gwes. ag the

equation of the lecus
- e P (T ) RNUPRNS IR (i)

which, according to equation (3), reprosents 2 conie baving d_OUblff’
contact with the eircle 2% +3% = p2=0 at the points of intersectod a
the cirele and the line & —~£—=0
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Toshow that A is the eccentricity of the conie, we write (iil) in the
canonical form : we get )
(, | RAZ .)z g AERLat g
TN TR Tow tao
Henee, if ¢ Is the eccontricity,
e?=1-(1-A% or =)\ _

Ex. 2. To find the equation of the pair of tangents to a given comigA
from & given point. ) QA
Let aa+2hay + by + 8yw+-2fy +0=0 be the given conic and (of, 1)

the given point. \

By equation {3), R N
et 2hay + by’ + Bga+ Ofy 4 e== Mo+ 1oy, + o)+ by gl + )
R )+ (i)

Iepresents & conic having double contact with the given conie at the
intersections of the given conie and the polar of (a1}
But the pair of tangents from oy, #) 1s sm’fﬁ conic, which also
then passes through the point (1, 70)s )L;‘i%\ thus determined by
putting 7y, 3 for 2, ¥ in equalion (iv), Wa get finally
(@r+ B+ By P+ g + 2y, + ) P20y + by 2gw+ 2y +0)
=ty + Ry gy + 9@+ @)+ )+ o

We next consider the coni:gx& of the conic § with the conic
' S=N LR o(4)

The simu]taneous,sﬁ'k\utions of S=0 and S=x.12 are
those of §=0 and{A=0 twice over, that is (2, Ly four
fmes. S and (4ysre said to have 4-point contact at (P, L);
the dotted cury@ it Fig. 148 represents (4). ' '

2-point, 3-paint, 4-point contact are often spoken of as

contact qﬁ\tb} fivst, socond, third order.

Ex, ‘L§[‘he liens of the centre of a variable conic having 4-poing
taghrith a fixed conic at 4 fizned point on i is a straight lime.”
Béfer the fixed conie to the tangent and normal at the lixed point

's faﬁas axes of wand y, and so vrite the equation of the fixed conie
Sthe form y=0nt - hay+ by,
Then, by equation (4), . _ _
b the g oo P T EETRA =B =M e {Y)
. fllluatlon of the variable conic.

or the centra uf-(v) we have

@2+hy=0 and 2hz12(b+Ny=1,

0 that, the 10811_5_0f the centre is the line ax+ hy==0.
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Now take uny three Hnes L, M, P and consider the

equation PPaXCEM e, {5

Clearly (5) is a conic; L=0 meets it at (P, L) twice and
M=0 meets it at (P, M) twice, so that (5) represents a_
variable conic touching L and M at (P, L) and (P, M)C

N ’
# A

We Fle. 148

Let 8 ;O}B:e this conic; then the equations S=0 and
Pzéxi};ﬂ'f represent one and the same conic. Heneo

A eonic may be defined as the locus of « point which

Jvoves so that the square of its distance from one of three

A Fved straight lines is proportional to the product of 8

N\ destamces from the other two; these two are tangents 0 the
NV eonde, and the remaining line is their chord of contodt.

Ex. 6. Find the equation of the parabola which touches the axes of
X and y where the line ax--by==1 meets them. .

Equation (5), P2=ALM, gives any conic which meets the lmes
L, I twice at each of the points (P, L), (P, ). Ifence the equatiol
of the parabola (Fig. 149) 1uay be written

(on+by—12=X. zy. ISTTUOTROTURReS 2
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This equation represents a paralola if the terms of the second
degree form a perfect square ; therefore
a2+ (Qab — M)y + b2
is u porfect square, so that . .
(2ub—AP=40" or A=4ab,
sines the value A=0 gives the pair of straight lines (ot by ~1)2=0.

vf
. RO
\ D

TN O X
Fronddd.
The equation of the parabols is‘t“here.fore, by (vi),
(e By — 1)2=4ﬂ:bs‘c‘y or ard2Vabry+by=1,
which may be written \&{/(ow) + ,\.,f(by) =1

Finally, take gy four lines Z, M, P, ¢} and consider the
e T I 7 (6)

It Will:..:@'a\w:'be clear that (6) represents a conic which
Passes @m’lgh the four points (P, L), (P, M), (@, L), (§, M).

._Ex.;g\_ Show that in gemeral a conic can be drawn through five
Pul%ts, and a one-fold infinity of conics through four points, and thab
wtheJocns of the centres of these is a gonic, .

' Let 4, B, € D be four points. Choose axes so that 4, B lie on the
paxisand € £ on the g-axis, and let the coordinates of 4, B, C, D be
(&, 0), {5, 03, (0, 0), (0, d} respectively.

&n, by (8), the equation

2,y N Y )=. SRS (vii)
(w+o )(b+d 1)=A.ay
T*PTesents & conie through 4, B, ¢, D for all values of A.

ag,
a Q
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The coordinates of a fifth point & will serve to determine X so that
one coniec ean be drawn throngh A, B, &, O, E, while 1 one-fold
infinity of conies can be drawn through 4, B, ¢, 13, one conie for eacq
value of A.

For the centre of (vii) we have

2 1 1 1 1
ot (—m *)-'*f‘ (gﬁz) =0

1.1 2 (1 I O
(a_d+§_'\)r+;;d'y_ ;+”,)—Uj .
g0 that the locus of the centre is given by the equation \' \“.\
2 , 2 _2_(1 ':>‘_ L1y .\
e ® = ety ) (g ~\
whieh represents a ennic passing through the intersecfibns of 44 and
Ch, 4¢and BD, 4D and BC. RS

EXERCISES LIL .

$
1, T is a variable point ou the tangeht'dt /2 on a parabols, and
the diameter throngh 7 mecls the elitye'in ¢ show that T4 i
proportional to 7. O

2. P@isuchord of a parabola, @nl the diameter through 2, a point

in P, meets the curve in (/ andbhe tangent at /2 in 7'; show that
TOSNOR=PE: RO,

3. Cis the centre of an éllipse, FCP and DCD a pair of conjngate
diameters. PEP' is affemi-circle on POP’ as disueter, H{ i an
ordinate of POP, a,n(,}“‘)?‘fz and O, each perpendicular to PCE, mect
the semi-vircle 1'1\5'\ and £ respectively ; show that @R is parallel
to DA X ) :

4, Two coppics, whose centres are € and ", eut in four po_inf:ﬁ-
C4, OB an A", O'B are the semi-dianmetors parallel to a puir of
COMMon akﬂr’ds. FProve that A4, BE, ¢'C" arc concurrent.

. :H}i’31131 tangents at @, @ on a conic meet a third tangent
diww\ Al £ on the conic in 7, 7" respectively ; show that
Q) - PT_Qr
.‘\'.’ . PTr_{‘?rrrr
B. Two conies § =0 and §,=0 intersect in four points 4, B, G, I3
show that the equation of an ¥ conie through 4, B, €, D can be ertte;l
in the form § =48, If £ is a variable point on a (hird conic throtg é
4, B, €, D, and a lipe through R parallel to a fixed divection mee
S in Py, Py, and 8, in @, @,, prove that RP,. £P,: RO, RQ, 18 3
constant ratio. _ '
A H TP TQ are tangén%‘a\ to an ellipse, nnd the normals PG, GE
meet the axis at ¢, X, prove that 2'P/P6 = TG/QE.
\.

i



§ 166 EXERCISES LIT. ) 449

8. The fout & of the ordinate of a point 2 on a parahola is the-
centre of the circle of curvature ab its vortex.  Prove that the centre
of the circle of curvature at P lies on the parabola.

9. Prove that the focal chord of curvature ab any point of a conic
is equal to the focal chord of the conic parallel to the tangent at that
point.

10. Prove that the common chord of & parabola and its circle of
curvature at any poing constuntly touches another parabola baving
the same vortox. _ ) : A

11, Tf the radins of corvature at P on an ellipse is twice PG, wherg,s ™
@ is the point wherc the normal at 2 meets the axis, prove that

OP=04. _ N
12, Find a point on a parabola at which the focal chord:of E\ti_rva,ture
fsalso a chord of the parabola. - NN

13, Show bhat the locus of the soeond point of intergection of the

normal at £ to the parabola y?=4ex with the ci}"({&@f curvature 13

“the curve 12503 = 4z ~ d0)(2 = 3%

14, If O s the centre of curvature forfHe yertex 4 of an ellipse
and the normal at P meets the major azis i\ then G4, CA _a.nd the
perpendiculars from ¢ and ¢ on the taggentat * are prop ortionals.

15. 0 iz the middle point of I;‘Q;' the normal chord at Ptoa

rectangular hyperhols ; show thate@lis the centre of curvature at P

18, Prove that the chord of ‘ehrvature through a focus of a conic
is 207%C4, where (D, CP afeconjugate senu-diameters and £ is the
point of contact of the cirgledf curvature. .
17. T PRt is the clgk‘;ﬁ" 6f curvature at the point P on an elllfp}sze
whose eccontric angle 18,8, prove that — 34 iy the eccentric a.ng%e‘o A
18, 1f » and r.4re the chords of curvature at the exfremities of

CE, (D, u pair pf@onjugate sepni-diameters of the ellipse

PAY, Pl + 3P =1

prave thafrs & Py ri=a{at+ %) sin2d, . .

where GN§the eccentric angle of one of the extremities of the sewl-

diaruebers.

) .19."Tf twa tangents 07, OT" are drawn fr
m\g}p’ ellipse & +y2/h2=1 and d, o’ are the paralle
Hhow that Oﬂ_()ﬁ_ﬁ
aE T A _

20. If A and B be points on the axes of & an
0B =5, prove that the equation b—1)=0

; ~1}=
zy+(Bat Oy)lalatylo—1 that
represents o conje circumseribed ahout trlgmglg Oég’wazl(:llat t-}?e
B2+ Cy=0 iz a tangent to the conic. Tletermine 5 an
conic may become the circle OAB.

om the point (f; g) to
1 semi-diameters,

;]
+5-0.
d g snch that 04 =g,



450 ANALYTICAL GEOMETRY. [CR.

21. Prove that the cquation of a parabols which touches the twe
straight lines ax®+2hzy+8y7=0, where they ave cut.liy the Hupe
Lo+ my+1==0, is

(® + 2hay + by?)(am? — 2him + b1 =(ab ~ A2 (Tr4-my + 11

" 92, "The equation of the family of conics inscribed in the rectangle

formed by the lines 2+ @=0, y£5=01s ~N
2t v 2y s )
A EX 7 W D RN O

Prove also that the locus of the fori is % —gP=af -3, M °

\

23. Show that a conic may be defined as the locus pfaygoint P such
thay GF% is proportional to PH. PN, when O iz a ﬁm}] point and P,
PN the perpendiculars from 7 on two fixed sbz'a.'igklilines. )

24, If 2==0is the equation of a conic, andn=@ the equation of ite
director circle, show that the equation u —Ad=0 represonts for one
value of A, the directrices of the conic. ) ,’\\’

25. Tangents TP, TG are dmwn\'f;\;;ﬁ T 7)) to the parabola
¥¥=4dax; prove that the cquationefthe eircle cirenmseribing the
triangle 7'7Q is a{=?+ % - (4,2 + 2ty — g, (@ — oy + aay (26 — &y )= 0

26, If S=0and §=0he tllé.'e(j'ua,tions of two conies, and Z=0and

M=0 the equations of twolgtraight lincs, interprot the equations
S—k¥=0; S+ kLM =0, §8%L%=0, when F iz a constant.

27, Prove that thegreduct of the porpendiculars let fall from any
point-of a conie on®o oppesite sides of an inseribed quadrilateral 1
10 & constant r tio\‘td the product of the perpendiculars let fall on the
other two sidesza&

28. Proyg\tliut the equation of a circle which touches the parabola
yi=dazand passes through its focus may be written

’\ - '(1 +mA(y? — dag) +{z = my 4 am®) (x4 my + 3o)=0.

0.) Prove that the squation oz +~Fy=1 represents a parahols
show that the length of its latus rectum is

\ dab

If a+4b=Fk, where £ is a constant, show that the locus of the fod
of all such parabolag is u circle.

30. A hyperbola touches the axis of » at the origin, and the ltlﬂg
y="Tx~5 at the point (1, 2). One of the asymptotes Is parallel to &
axis of #,  Find the equation of the curve.

8l. Tind the equation of the conic through the points of in;er'
section of 8x%+-y?=4 and szy —y?=2, and through the point (~29r
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ordinate ishebefo, aud deduce that if a recta
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29, Show that the equation
A B
e e T T s ag =0
OO fig S SLL f Py B C08 g tyaino, Py L0205 + 3 sin oy — P3
represents & comic circumscribing the trian gle formed by the lines
2 E08 oy + 3 ¥IN 6y — o, =0, ete, where A, B, ¢/ are any constants, an

that the conie is the chreum geribing eircle if

A: B C=sin{o,—og): 8D (a,a—u.l):sin{a.l—-_a.z).

33. Bhow that 8=kS, where % is a variable parameter, representE™\

the system of coaxal circlos to which Delong the circles §=0, 3 =0~
Prove that tangents from any point on a fixed circle of a coaxal
gystem to two other fized circles of the system are in » givenJatio.

34, Prove thab two patabolas ean be drawn thruugh“f})ur given
poinbs. "
85, TIf u variable conic pass through three fixed paits and have an
agymptote paralicl Lo a given line; the Tocus of it{c@-ntre is a parabola.
T it pass thwough twoe given points and ha.ye‘itp_asym_ptotes parallel
to two given lines, the locus of its centre is‘a\stralght line.

36. Find ihe locus of tho centres pft a.lxlArectan_guiar h_yperbolas
having contact of the third order with the ellipse atja’+ ybé=1.

37, Pys the common ¢hord of Aparabols ¥t =4a® and its oaculating
vivele. Show thab ihe locus dof the intersection of FPg with the
perpendicular drawn to it frurthe vertex is 32(35;,-—@::53 .

28. The polar of the thous of the parabola i =dus with respect tlo
any rectangular hypeghola which has 4-point contact with the parabola
touches the parab liﬁ. } gi=da (3&_}. 2m).
throngh the shree points (& o),

i he point whose
nyperbols. pass

through the-vertices of 2 triangle, it Dasses through the orthocentre.

%Uéiﬂg the relation between the eccentricity ‘and the nnﬁlu
botwhen the asymptotos of a conic, find an equation §iVing the
(Setenitricity of & conic specified by the general equation:

. lines be drawn wlich

39, A rectangular hyperbola passes bi .
(e, 0, (0, o) yshiow that it meets the g-axis agein ab b

s '4 . : 7 gonic two .
O U I throngh a gV B duot of whese tangenta is con-

yuske with the normal angles the proct=
stant, show that the join of their extreiml

point on the normal. e ¢

. wo
49. Tf through any point on 4B eqmlateral hyperhola be ¢ r:'u_vr) )
chords at quhtg anglzs,?uhc Perpendicula_ir let fa.llil on the line jomng
their cxtremities is the tangent to the curve.

43, If a circle have double contact With 2 .:xmiC,‘ 'ﬂl'
to the cirele from any point on the comi¢ 18 10 atwt'b
porpendicular from the point on the chord of contact-

ties passes through & fixe

o tangent drawn
tant, Tatio t0 the

\
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44 If two conies bave donble contuct, the square of the per-
pendicular from any point, of one upon the ehord of contact is in 5

constant ratio to the rectangle under the segmients of that por
" pendiendar made by the other.

45, If two conics have cach deuble contuet with a Lliiwd, theiy
chords of contact with the third conic, and a pair of their chords of
lutersection with each other, will -all pass throuvh the sume TolEtN
and form aharmonie peneil,

. . . N ¢
46. The chords of contact of Lwo conies with their coutinon tangents
pasa through the futersection of o paiv of their common c-.hu;z'tig,\ o

47. If three conies have ewch double contact with a fyurth, six of
their chords of intersection will puss three Ly tlivee Lhfough the same
pints. 4

ke
¥
48, 1f three conies have one chord common tw:iﬂh Lheir three other
comuion chords will pass through the sane poiuh Y

49, If four poinfs on u conie are gi\-'erxh Nt chord of interscetion
with a fixed conie passing through twka these poinbs will pass
threugh a fixed point.

50. Two eonies 8, and &, interseéri‘jfn the four peintz 4, B, €2
Lines A F\F,, B(A6G, are drawn cqt’l‘;’ing A and 8, i By, Gy and By, 6
respectively ; prove that the intersection of £ and G, lies on the

line €D, &Y
RN
N\
X“Q\
¢ '\\}
‘\
75N/
\<
O
::\“
§”\§0
R\
X
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ANSWERS,

&\
.¢0\.\
§3,p.5 1 2,6 -5 -3 8. 5 -11,-5 @R
§4,p 6 1 (s @~ @F 0 -F OF P \ 3
\\o

\\\

Exercises L 9. 7.

L4 = -1,1,-3-1,-4 3 O% 3-;((%12 (i) -2 - 3
4 }5_3:_1‘3"9—-':— 5. — 6 .\ 2,6

7. % 0. a 1. A 9. Foe+d
13. For first part take M as origin fuysebrmd part take 4 as origin.

14, - ,2[(«*:1+x2 dy (-2t O

Q. u[_{xl+'c2+d tN."{(v"-"q %Ex:}bm}]
15, 2nnfay—m)imd-n). (m— )y~ {1+ (L)

ﬁxercxses I plo

1. (1) +4 in. pqr}v @) z=3; (3 o=15, #=-% {4) & sec. before
zoro-tine, {1 Bee. before ZeTo-iime.

2. a= 1+29\, s, 2=2-%. 8 ~L4b

9. {(o:,,+:c1)t—x1},¢{2s—l}.

7 -Q ’\“' 8. 3%

§ 9 '“3 1 155 @5; (3 ‘

a\\' ; (2) -3 ,% {3 1% (4) _3,% 4, 35

\y Wor 14 - w2 "0, 8,51 VI3 3.
Exercises L. p 18

2 -La - s (3 %) (5 1)

o 20 @0 L, -8 @3 - 8 5 18), (25, =T N

8. 2150, SVIA. 7. 2% -1 L3I0,

o 45 3V, PG o. (5 %)

§14,p.21. 1 (.;., ), (~3%, 9)-
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Exercises IV, p. 26.

4 y+3=0. 8. No, 17, (-2, -25), (-5, -4

18. 2p-y=1. 21 {1, -1), {~2, ~3}, (7, 3) lie on the line,
Exercises V. p. 32.

8, ‘?{) _%s %: %’! _%" 15, (13) 4)' ™\

22. The line through (8, 1) of gradmnt 1/2,

4. (l) line through (0, 8) of gradient 3 ; (2} lmc through (0, 2) of %ﬁ@lent
%3 (8) line through (0, 1} of gradient + ; (4) line throun‘
gradient “T 3 (8) line through (0, - 3) of gradiens -2, \J

2e. (2, -1}, (3, 2) are oo the line, 28, 3uv=2y, 29 y=mr e,

80, 2w43y=19, z- Qy-l Bx -2y +16=0, 2u+y=T./0" *

83, The gradient of BC is £, thercfore tho gra,dlentku{ \t'he perpendicalar
from 4 iz -2, 3/ =-2or Zz+y=9.

83. -4, -1, &; 2v-9y+98-0, %~ y+5=q}6x+dj &

4. Tz +8y=61, lw-6y+43=0, = - By=88" as. 4, 413,

86. 42,  40. (1, 5) or (5, - 1). MNal. {a-b, e4d) or (24D, b-a)

42. {a+b-4d, b+c—n) or (nt+d- b aqrb—c)

. Exercxsés VI p. 42.
1. 44°5, 3 -75 3. -388:5, a. 2(bw+ay-ab)
6. 72 6. -39, 7. 28 8. -3
o 22, 12 ‘}i‘~Qy+37—0
Y
\\ Exercises VIL. p. 45
9. Jxidy= 6 > 4. dr—-6y=15.
5. Wf3x% By-FG 0. 6. 5./3z+5y+11=0.
2 2 ,\2, —3/4, 1f2, - 2/3, 1/2, - 3/7, 34, ~7/5.
8, \an 10, -bju. 11. m, m.
s\\
Exerciges VIII, p. 49.
L 3w 42y +19=0, 2, 3x-4y=32, Sw+dy+8= e,
8. 2w-3y+11=0. 4 x+y=4, xt+y+2=0
8. wty=4, x-y+2=9, 8, dx-3y+3=0.
7- 2,3, -2,2/5, -3/2, —ofb. 10. bx-9y=11, 8z + 2= 2, w+ fy=15.

Il x-3y=1, 17+ 12y + 4=0, 2z -8y=1. 12. 7, -1, w+iy=790

18, 4x 9. 14, 3x-Sy=8 No. 5. (i), (iv). 18 (L1

17, 13’ %O . 18. (:%’ 23

10, 52

(-3% -52). . 20. {17, lg") {0, -s)



N 2679 " ANSW _
; oD 1 ~ ANSWERS. 455

§za BoAL & (i) 2r-y=7, (i) y=32 -8 (111}m:+4y—3'
(iv) dv-2p=8; (¥} y= 2,5'-1-5, (vr}Zxr-?y

Exercises IX. p. 52

& (i) dor+3y=26; (i} Sx— —Zy=13; (ilij 24+ 2y=8; (1v]3a= —-y+T7=0;
(v} B+ 3y +9=0; (vi) Bw- Ty=12; (vii} da+3y=0.
8 Ta-2y+30=0, 2wt Ty+1=0, 4 Ju+8y+46=0, Sz -Gy +1=0,

& G]?lz) 8 (-4 "E“‘L .'\ )

Exercizses X, p. 54 S &N
11 )
2% 8 32 4 L e g2 o7 \% 22 10,

AN

Exercises XI. p. 58,

2. =3+, y=5+u (-3L 4. | Ve, (3, 3)
7 (-1, 2). 9 z43p=1. Y 10 de-ty= ad ba

12, w=1-3u, y=21%u; x=14+%, y=z+?a‘vf 13 (4% -48).
§32,p. 6. a. 5x—‘~3y+15 0. w\° 4 2r-y=4
11 &N
& o ys 3‘5 -2; .., vr, %;*}‘,-;;
§33: . 64, 3. “"I%"‘?/Tg;”;'sé"; ta.na:-:ls—z, p="f§.‘§"
4 (i l-rz‘s L; i) 4, 540 (iii] -4, {-; ﬁ"v*) "1%: 12: ™ 4 9185

i} L . 3l —_——
(Vl} ;_,pJIO) (Q'}? Is/_““gé’ ( g NJ:F{_‘J

§32,p. 55 2 SVQ 2. (ﬁ%@, F_’_;-Eq.s‘), #>a)
§95, p. gslm, 1,16, 5; 45°, 56° 19/, 78° 41%
.9=v3w903:c+y =13,
SBhan -+ I tan a)+ (z - a) (£ - ban a)=0,
-0 < tan &)+ (- o} (I+m tan o} =0.
11»..’{: 5y +82=0.

~, §“ P 6% 2, dwtdy=1, 100-10y+3=0.
v %4 Zw- 8y =1, 84z + 8y + 33=0. Q16 @
5. Yo - 300y 1 600 =0, 1894 +9y=50. 6. Sgo 3T
7o By2-2pa - (Y2 Ly 242 +7=0,
BoR+ 2w - (2 - 4)y +2,02-T=0
S3%.p. 7. 1. (g, -1). 2 (-3 1 8. {0, 2)- 2. (33
8. (3,1, e 3-2 30 o I3 L1
.4, 02

8, z~y=0, 2+y=0
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" §88,p. T4 8 S9x=6ly
4. (i} dw=y+5; {{) W0x+6Ty=0; (iii) 3= 2Ty + 57
- (1) 216+ 167 =53y ; (i) 98+ 149=62y; (iii) 62+ D3y = 165,
(i) 10x=5y+18, 3&+2+19=0, 7a:+9 T3
[n) B+ 10y =4, 2u=3y+9, Tx4+Ty=13,

Exercises XIT. p. 75, .
1 2 - 2. (xl%‘xz.h)f(ya =#h (T~ )z, - 2). 0\‘\
3. (ad- bc{d {be ~
4, {b’{bc ad) - b{b”- ’d’) d'{be ~ad) - d{b'e’ - 'd’)}
W -va) ’ G5
8. bja, efJaP R

10. (i) ¥d=bd'; (ii) dd’ + W' = 0; (i) b'd=bd", d(a;}) Ble—eh
11, Bd+.A4b=0, Ad=Bb, 13, [ Blad-be) NG A(be - ad) - Ud}

AE;+ B T T Ab+ Bd
13, 4, 14, 36°52'; miy=2, Sz15< %y 16, Below,
17. (- §, -5 23 T\e lines are convurrent,
23, Gdw+49y+19=0. 24,0 -l, 11a or 271,
: o\ e l-u l+a
25. 25x=23y, 23z +25y=0; (_4'?5! ’_Tafc) (-1% 4D-
28, (1, 2). SNT 2w, (8, 113, (-4, 8)
29. o+ b5+ P=3ubc; or, 1f~s.,b and ¢ are real, a4+b+c=0,
- + be - ad
30, 3x+lly=1 , a1, g M-Blzrie-cye
M A \ | & a)e= )+ - Dily-al
82 p=2 p \" . (3, 4).
§89 . 80. 3.~{é+y 4) (34 hy — 20, . (1lz+8y - 9)(Te—11y+1).
- wtyelng=241; () 2=y, r+_;+1 0; (i) Srty=1, z=y+1;

(iv) 3x+ﬁ‘~2y, 2e+8y=5; (v) Sw+4=y, Bu+by=1;
{¥i) 7~‘N-‘3 Sy, 122+ 6y = 5 {vil) 3v=y, =8y ; (vii) aw="1y, DZ“ﬂJr
%}‘aﬂb elz=cla-bly, x=y; (x) arthy= VA" ab.y.
§4i\p 84, 3. Yos, 4. 2402 50RD + 2562 + ab =0,
- (ol ~ B {al’ — o RY (R - WD), 7. Bw=2y, 22+3y=0
> ) s (1) ao® + Zhay + by2=0; (i) Ba2— Zhay +ay®=0; or
) me-!—?ty kN —ab. gy (ii) br - hy= 2F—ab.y.

\‘;

&
§22,p, 85 1. 4 538, 5. 3x+2y+3=0, Qr=by+2; >
Exercises XITT, p. 94.
5. - 8. ‘1‘5&- 7. Roots of 22-2x-17=0; i+3/2
8 -12, 12, 38, 18, z-3y+4=0.

§47,p.97. 2. pull+pP=(py+ Pt
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Ezercises XIV. p. 100.
1 (=2, -1 2 (-3 -1). 4 o2®+2hay+bP=0.

hf—bg gh—afy (—pP-{y-gf_(&-plly-q)
8. H 3
(ab 72 ab= 1 ° 2= o the same,
11, 12— Ty=61. 12, daf+dmy -3t - 6o by +2=0
13, z-3y+3./2=0. 14, zy--6x+dy=1.
15, datP=a?a®+ ") 16, yigt+Rf=a®. 2
17. bg-l—"'e 1. I.B.-Enzazsinacosa. 2\
N '0\. o~
'§50, p. 105, (i) ¥+ 1P=4; {n) BP=16; (ili} a®+yi= 2‘)5 ’
(1v}x2+y2+6:c 2+ 6=0; (v} afryi+dn- ~dy =
(vi) a4yt - 4w - Zy=4; (vi]) wBgt=2y; m‘\\.

{viit) #8342+ 2y =3; {ix) &2+ % - —dw=53; »

(=) a?+ 3+ 6z=163 (xi} at 4yt — 4o+ by +12=0y
(i} 2f + 32+ 6w - By =24 ; (xiii) a4 32 - 4¢+@\+10 0,
(xiv) 1847+ 1857+ 5+ 18y + 37 =0.

. of+y2=25. a P+ +109:4x2y 143
4. o?4yi- 24 2y=287. . (6,00, 6~ ~20) . {0, 18}, {6, - 12}
204, -1, (-8, -1 a (c-l-&&‘%},l c,le

§e1p. 208 2. ()3, 4,0 (nu b, -4, 45 () 1, ~1h 8
{ir} (-2, 3),
. {5 {0, 01,25 (11) {0 Ol\ (111 {1, -_) 2; {iv) (& 3hd; (= -1,1),2
{vi} (-r, )}, {"‘111'3 ( T §), (Vlll) (s’.- '3')’ 3’\"' !
(i} (- -. é le

2O Exercises XV. p- 1L
I “’2“?\334 2y +5=0; 5 B 1) 3. :E=*+ly*1:12;c+2y.
y’z 2 — G'y 3, L T WA
’ﬁ\ﬂf —w+11y+8 03 V225, _ 6. (12,1}, (4, Bk
’i 1,1, (& %) 2. m’+y9~](!x—y+19=0.

”\: A7, 22492=9; a circle, contre {0, 1y and radins 1.

\‘ 18. 2 +y%- 8a:+8 ={; a,c]mleg

oentre (4, 0) and radins 2./2.
2. (4, 38), & 3 28, bx-3y+5=0

21 {2; "])’( 1?;-: 1&)

§58, p. 115, 2. (1) 2 3"1__13 -{ii)y'””'g (iif) 22— y=53
(i) 20+ By =213 (V) y=2- -5; (W) 2o—¥= =73 (vil) y= =2z+4}
(viii) 4w +6y=15; {ix) 122~ fy =28

2. 3% a. }z'ﬁ'

§s6,p. 125, 1. 4
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Exercises XVI. p, 124,

L a?+y2e- 8~ Wy + 16=0; (0, 8).
2 214 -6y 9=0; y=5, 3. 2%+ - B - by +ad=0,
4 24+y%—Br -Gy +9=0, 24yt -0+ 24y 4.9=0,
5. aP4pf-2x-2y41=0, @y - 12w - 129 + 36=0,
Ty 624 By + 920, 22432 4 dip — 4y 4 40, O\
6. 224yt~ dz=T7. To &+ 3%~ Dpar= 4 2, A o
11 ww35.y=30, 25, y=15, ()
O
Exercises XVIL p. 196. N\
2 (i) x+5=0; (if) - 5y=1; (iii) G- By +T=0; {#by=c+10.
5. w=0 6. (0, +i,/B) 700, 22" 8. (0, £20,
9. z=0. 10, x=0, 11 (0 82, a0,
§58,p. 131 1 2%4sf-n_qg—0, 22034 247 4 255+ 24=0),
8 Pyt 22-9=0, 9x9+9y9+62x-—81w.;‘
4. 548y 50w+ 42+ 9 =0, )

8. @ty bw+a=0, duf a4y’ 650 L1020,
§59,p. 132 6. af4gr=gy 41400

" A® 2
§80.p. 134 1. (&, 3%}.,;.' YR xitgyi=ila 3. 2igi=_u
4. x=3. h &, 2% 4gf - 16w+ 48=0.
§63,p. 138 1. 2p45y-1. 2. by - 2r=10, 3. (4, 4)
4. Grtsy=1 \\ 6 (-2 -1
\, " Bzercises XVIIL p. 136,
1om=gH" 2. (3, 5). 8, 4v-3y=352
S (2,0, y=3, 04220, (-2,8. 5 ary-ot
3\&@1&53;, 20b/(af + b?}'k. 10, 22442 -3 —dy+6=10.
{3’.\xcusﬂ+ysinﬂ=m 13, Zy=x+5. 12, &P yt=at+
a 2 2 ¢
AR5 (L1, (). 18, z19+y12+-£x1+§3’1+&'
"\3 " 19, w“-}-yg:‘lx-i-_l. 2. —2(gl + fine — n){+mE)
24, wz—l-y?;—.%y-g-* a9, w2+§r'2—.%y+4=0-

28. (224 b) gy = o+ P By 5 a® 442+ 8Fy + b=0, where
k={—mn 202+ m®)n2+ b2 L

30, (-0l (y—b)2=,, 8L 20— (2,04 9,2+ 292, + 2 + O}
8s. %’J{‘2(x12+&"12+291f1+2.f3f1+°]’ _'mm%i"\f["mn(xf-i-etc)].

40, 2.7, - B 42, du=3y. 48. o=], y=1



pp. 124-168] ANSWERS. . 459

§70, . 130, L. yP=dax 2, 2=4{z-1) 8. a=day.
4. 18x®—Zdry + 9y — 70w — 10y + 100=0.

§7t, p. 151, 1. 827+ 0y =4f,

Exercises XIX, p. 16L

1, y¥=xa. 2., xty=2 a. zy=1

&, x+yzg- ) 6. x+y=L 6, 2r+dy=5. ¢\

g (w-gpryf=dt 8 (w-2P+ly-3P=0 O dfi¥=i 2l

10,y =40 11, (dw-2P+00=1 12 22+~ b:zg-“li

18, f=da(y-a) 14. 224 15=6y. 15. 3af- _g’-Flﬁ:::ﬁd.
da? #ay}a

16. Qry=d? 17, a®+if=0 4+y2—-9 AT

18, Tu%+ 2y + Tyt + b — By - 8=0. 21, (x- !;’ K?.?I} ky

22. (i) P*=2ay; (i) (x—pP=dap

2a. (i), (i) o + R=2(bta)y+a*; (i) a=daz ‘.s\ﬂ

24¢. (z+yP=20(2% ok 25, (PRWF=2a{2y —a)

26, (z-yP=2a{2v-a) 27. x"r2a(x+y ah

28, y¥=2a{yLa)h 29 =g le2y)

80, (v1y -0+ y) =0y 8. ay=1-2

43, (i} @(z—rP=2>2a~ x), (ii} 4@‘*{36& -2} =(2z - &l

Miscellaheous Examples L p. 165

% 5 -1 % \*s 1:1 7. {a, d). 8. (I, 1
L ($1+1‘2+$3 9’1+?/;+le) 11 (9, 6), (l 8), (__7’ —4). 13, (1’1)'
13, (mlxﬁ-m\.r ) m1y1+m‘,f;2+my§) 14, ()g;z:, 2;:?)
-Tibg + 7ty T amy mg Al oy 70
17. 4al 3+ 1=0. 18, x=-4+%, y=-1+4h, -y +i=t

19. /2.8, per soe., — 1 ft. por 805 m+2.ffr3 4o
204 i) 0, 32, 64, 96, 128 £t, per seo.; (i) 1L 13, 25 805
% (1) 32 ft. per sco. per 885 ; (iv} 18, 144, 80 it.

ANNBL, (i) y=32¢; (i) ¢=0f32; (i) 8= =16¢2; (iv) v=8A/5

' 28, (i) o (i) u; (i) —ufe
24. r=a+{c-a)tfy, y=b+{d- Bytfh
25 x=2+4, y=1+31 27. - 4g+14 =0, (~f §8h 1T

29, 8§33ty +107=0, 3. o0 (B " (? 1:!)11
82, $7, /086, 1r./056. as. (-1, T (-4 ) & - . b, bk
24, (bid-a, ctath) (-b-d-a =67 -a+b). 85 (& atth or

88, bu+(b+ciy=be, (b+e)wroy=bc

by==(d - bz~ 8l
fo-aly~ N

N
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as.
40.
43,
45,
47.
38,
53,
&5,

58,

57,

81,
62,
63,
86,

[51: 8

7a.

78,

76
79,
a1,
82,
33

B'f
>) 89,

o
Y

\ }

90.

B3,

ANALYTICAL GEOMRTEY. [Misc. Fx, 1-X%.

(e +p)% -0}, (Mot rwdir—p)). 30, (a2, 0)
& 13 11 B5ohe _z
o U7y Sy 1. 3, 3,( ,,,—5

2x—3y+7=0. 14 Zy=u, Syrax-),

A straight line, 26. y{x=T, 3y-5r.13-0,
acdf{be + ad - ab), bedf(be + ad — ab), 48, Jr-y+T=0
-1+ {y+2r =306 5 w=1f{p-I ). "\
(2, 4. 54. (3, 1.0 5.

=9, T2+ 154y +9=0, Sx=4y+9, [z + 8y =81, O\

y—b= tar et —a), P

l—'meua(a' N
(5 ~ 20134 B/26) = (13 £ 2, /26 (20 - 1), ¢
(r-4)(13+3,26)=(13+ 2 N2 -3

_ g 4 B 3 Ol — my _ 2bmp ey 1 2 - & \
T PimE : T B
Lat the line pass throngli (g, b} ; the lue\ i7 then
(X =aP+(y—bR=(f- a} Pig- by
1825 i) (1, 22).
4z +Ty=65, Tz~ 4y=05; B{y- 5)‘*{33—‘- 853) (x - 4},

Pty 2y 1] =g, a5 (—a 0, {0, §).

(4, 12}, (-8, &) NeT. g

171 G4 «'~:" (ad bc NI

3 W33 SPEIE R R L 70, Nat+b
V3 (O’ 3 ‘/3) 69. el

The times are givenshy the roots of the equation
Z(mn’ —m ra)t‘\tz b~ dute'm - anje+ = be’ = e} =0,
(m ¥izty- \xﬂ’-g-y?-x #)=0. This equation represents the
dizgonals a.ﬁ‘c{ he sircunicircle of the square OACR,
y=dx. (79 28=4(y_9), nmg e P Qi + 37 — 81 - 32y + 1960
7x9+163(¥_112 B8O, May+7Ty"— 48 — Gdy + 64=0
4+ 4y % 9B 58y +166=10.
1012248y + 81 "+ 3142+ 1050y + 1889 = ¢,
B 120y - 32 80z 10y +25 =,
1) 2igf=al; (i) x‘-’f+ya:as 85‘ y=2; Huot+bP—4e
hethy=y2 . {0, —3), (-2, -1
{1 +2hm - m*){x“+y2)+2c:(k ~ )T - 2c{1+km)y 0.
(i} 3o+ 2hoy 4 by ——(gx+f‘;}(£x+my}+ alintmyl=0;
() @@ ~pP+ 28— p)(y - ) +bly—-gR
-2{{w—p)(ap+hq+9)+ (¥~ Q) hp+bg+ 13}
AUz~ D)ty - )}l + mg+n) g,
+(@2+2@9+692+29p+2fg+c){£(x—p)+m(y QP+ mgnf
dytmale g, Try=0, 85, -3, £./26, (- 28, 15),
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86, (w-nlfriy—Dbi%=ul b,

98. (geosat/sina+pl= P e . 100, #, ¥,
(o= fy 4+ 2 g =2 o) (g9, CatE=l

Miscellaneons Examples II, P 174

L ar=ih ' . £\
CATept i e 2y 1T=0, 024 9% - 622 - 28y +73 =0,
by = Byl — o)~ e - o) by — ag) + by - ) by - gy} =< 0, 7 '\:\'
by -y - i) =My - )2y - aw) iF O : ON =) o\
- M2y, 21 8p=6, la+6=Ty, {3 4. 7. Bee Ex, 9/
{5, 12y 5 4y 10. H4,./8+BYqid +B:/3}‘%20=&
12 {r-a) {m=a:2]+(g/—g])(y=y2}=ﬂ. "g'.'
16. W2 - ablf{am? - 2ilm 4 4. 17. Ry — m )l +?;?9@1T§(a+bon2).

[ TR

18. Soe §38, 20, (1, 7+m+ 0y
h-8  a-a 38 . )
27, (- —F BT e a1, 35, A\
(ﬂ-h as’ ﬂhvaﬁ) % { \\ .

88 2-p=Yaib), B+o)a-by=3aBbeady
fiaz- ay=Lu+blar); NV
_ 112~ 2w+ B)a— {w+hly +ad+ Jab L BP=0, S a2
8 (@B (224 o) L Bofam L hyy =0 O\ 42, (el +bmtnF=riB 4 ml),
e (24 Bl -y=yi+L (&7 dph 1. y=x+ay.
58. Tt tie circle be 2%+ yﬁ_—_:a?;gﬁo,; the loous is Vi +52) ording
W = (x+ 2a)%a - x)f(zada), or (i) y=a*(x- a)ffa+3z) accordin
a,s]y the pointi inove f { (the' samo direetion or in opposite ditections.
65, (p%y ¥t 2:’4.%}21"?39{9;??}}-
56, (b — ap)(ay < ba Xah) = 2%z — o) {3 - B). ' ;
s7. bb’x[a-—x)cfzcz"{’?ﬁf&f}y When 4B8and A’ are parallel this bacomes
(P — ay) (hahety — aB)=0, or the line 4B and the perpen
throughh0do 4 8. .
SB. 207 pyeBet) = (462 + o) (x + ).
8O. x(n AYgr+ y(E ~ a) £b + by =0, : . i
61, L’g{%@.fb@ {0, 0} ; Iet the girels beﬂ {x;a}ﬁ-r-y‘a:rﬂ. Them the locus i
< = — . . .
\ e :0 When ¢=b, the locus is a cisscid,

59, afyt+ oyt afyt=0,

BRNG a1 Py — gt =),

AN . |

QO™ Exercises XX. . 167
5 9-1=2% yil=a?, yib=id

8§80, 1. 100. 4. (287, —087; ()3, ~1; (i) 258, ~098:
V) 287, -087; (v) 29, ~00L; [vi) 295 »~ ) @, - 1) e

8. () {0, —13, (3, 2y; i) (243, 003), (- 076, 1?9}: d(g;a w mest the
(iv] the rools ave imaginary; the straight line
curve at 51l
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7. (i) 233, —020 -213; (i) 072, (iii) 211, - 0685 (iv) 1460, 455
-2 06 (v] 1-16; (\’1}186 -3

8. (1) (~086, 074), (140, 1-96); (i) (3 B3, 376}, (341, 4-65),

8. (i) - 086, 140, {ii) B-33, a‘tl

Exercises XXIIT. p 213 '

20 W5 55 ~d &5 (4o, 45—, —u0)s LR TN S
{iit} 1-30, 0-30; -230, -390, 1-32, (036, —137, 414, N\
(iv) 069, 0-41; 0-63, —1_69, {v] -2°18, 052, 1, h; \V

L ¥
~

"
§89, p 217, s, (wrina -y oos @) =ga%2 V2 oog q, \ 3
Ry

\"
Exercises XXIV. p. 2ABY
(y~z+2p2=9y :.\\.}
Hy+x)=(y - 25, or, lurning axes Lhrof@i‘r 45°, »=18
(@+ 1Py = a2y 4 12 ¥ § oa:"“—{y +x)h
:c(y-r—l)(z:y-—l):yz(m%—l}% \7 2ty =Gy,
={x 4+ 1o~ 1)3(Ba2 . 1. \

A
Y
X

L

N

e 0.0

"s

Exerclses XXV, p2

2 y+z=0, 3;-_31:—‘7~\ 8. y=w-1; (i) sa=p+h
) x=8y12,; ¢ 11{8}-{—33{1—2 =0; (iii) 24 3y +2= 0 dr=3y+2

5. (i) By=x+1; \QQ By=10w+1; 1z A10), maximum and minimom
valnes of ¥

[

& (i) -4, -2 ,.0(11) + 2.5,
10. (i) (5, 0,\{3‘ 13, (0, I)mee (35} (0, 03, (2, 0), @, 3), (1, - 1);

5 (-0 o)

§~9§, <8 231 8. (il otwe, gep?, {ii) & —ve, ac=>18,

\§93 P-233. 2. (i)y=3z-a, (if) y +a=2, y=o-3; .
\ : (il =3z -7, , ¥tSe=1; (iv} ¥=bw-T; (v)y=2z~1), y=2{-3
§99,p. 235 1 Dy=-z-a2 {y=-atoas . ;
Yo
{iii} g7= _;: Iﬂi Givig=l-2x42:2
Wy=-T+3w-32 Vi) y=-24a- Bt o (vii) y=24 25+ 2R
2. y-f-x:
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~ Exercises XXVL p. 244
4. Be+y=1, Juty=2 y=x-2, y=3&-T. 9, Zy=x+3
3 .
10. (i) g, n=g -Gt (00) g+ T=2, 7= - TEHOE

(i) By =20r 28, n=305+ 3485 (iv) y=3, 9= -2
() g=1, 7=TE"...

16. y=x-1 17. (3 2 O
19. 3y=x-5. 20. k=1, k——-2,'or h=f, k=1, or h=-}, k §\
§108, p. 252, 4. (i} y=2-10, y=13z-34; (ii}y=2(x-p), 2py=2e~ N

(iti) y=11z -6, y=2x-2, yta=2 y=2w-6, y=1l=~ 38‘
Y= W +2, y=47x+34; (iv) y=0,7= ={b-alfz-1}; I{VQI'GU {n>=>1).

Fxercises XXVIL p. 257 \

{Abscissae only are gwm first, twrning pomts\\tﬁen inflexions, then
intercepts on a-axis. ]

1. 3 none; 233, —08L 2. 3)‘nqm 462, -162.
3, 0,%;%;0,2. 4. AN2; —§; 065, 133, -347.
8 1, -1; 0; 035, 153, ~1'88. ‘a “1-53, -1°53; 05 240,044, - 284,
7.2, 4412, —0°12; 322, 078; 2£w§ce,5 -1
8 0; 1 1; 208, —083 A9, 1,324, —124; 220, - 0-29; nono.
10, 3,1; 0,237, 063; 33, 210 -097.
12, (9) Noue. (10} (1, 25 (—1 ~2).. {11) Nome.

12) (v, 3+2 Q‘,*{ V3, 3-243). (13) (-1,0); (-3, 8

{141 (32, 32" (18) (&5, a3/, (16) (Ya, 32/2)

{17} Nong.{ [18) {1,2); (- 1,2). {19} None

~\.~’
x'\" Exercises XXVIIL p. 267,

1. —2a4

{ll) 31 - -L
v - 0013, BET
(vil) —13:93, 3375

a, \Ni'c value of z is given second.) {i} ’3’ ¥
SN i) 583, 3415 017, 089 () 3 13 -1
AN 215, —087. ({vi) —646 137; 046, o7,

@\l - 007, 163, N
NS 4 @) 0, -32; () - 1885 (i) 0, 208 6. 9= —7c-§ n—o o
8. 0, max.; —4, min. 7. Now origin s (2 0); (20} £

S35 8§
8 3, 0; y=-43F, (min), 0 (max.) 9. 10y-3-247 23

10, 32(y- 9y _5); 9 min,, § max.
ah LE R b C13 w4
11, T . 12. —><‘2 i xg
k4. () Joby (i) oJeb; (il abs (9 Jaos (903 (vi) & 16. 32
15, fi)Qab; (ii) b+a+2:/ab; (il 2ab; (iv) 14
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464 ANALYTICAL GEOMEIRY. [Ex. XXVIIL-XXX1V,

20, "_f_fl_]m il a>1, o0 0er ) ﬁ:_”{-l-].:l =) -:?;_Ptjl‘:_‘_l if D],
21. 242, 2 min,, 2- 242 max. 22 (1, 1) max., (29 max,

23 (i} ?],-(T+\,*’13) max., %('E’—Jl:&] win (i) 2 min,, ]‘.il-’ max, ;
(i} ~4 -2,/ max., -1 42,08 min,;

N

(iv) (92 2,/14) min,, He-2,/14) max. (") 9 max, -1 min.
(vi} 24 /3 wax., 2 -4 min.
N s
120, p. 238 (1) 27321, - 07321 ; i) - 8YT2, 01620 (1) 1-5481, 4050,
P ~

$111,p. 275 3 The root lies betwveon (1) 1 g 2. (i) 2 a-nelﬁ’;
(1) -1 and -2, (v} 0and 1; (v} tand 2 "
8. The roots lie batween (i} 2anmd 8; (i) — Loang o, 0,and '3, % and 1;
Gil) —Zand O, Pand 1, 3 and 4 {i¥) =2 and —{;;l,'a.l'ld 2,

Exercises XXIX, p. 279V

1. 2-005. 2, 1218, 2. {466 A\ 4. 1552,

5. 1976, 6. 0755, 7. 1220, - p5Ga 8. 1426, - (rayg,
S TW/T 10 283 11 02N 12. 0347

Exerciges XXX p. 288,

2. (i) Noue; (if} two. 5205 Nowe s i) Chree,

3. {i) One, (} £} (i) two, O\ 4. () None; i two,

8. {») ti) Nomes (i) two. ~BI%i) None : (i) two,

6. {a) (i} None; (i) Lhrée, (3] {i) None 3 (H) threc.

7. {2) (i) Nones (i) tiwo (B (1) None: (i) two. B y=a+l
10 (D y=0,y=wi iyt 0, y=r. By =0, y=2-1; {iv] =i, y=2 1.
12. (y=wrd a- s =2

: SE=25 i y=1; (ivig="!;: (v] y=1, _
r=1, ; 3, x=4, .

18. (3, 9),

20N y=1, o

\ Exercises XXXI. p- 204,
Lot yra=0; (i) you, Y+e=0; (ii} =0, yon;
(R\Kyéx, iy rl=0; (v) y=2¢, =2y (V) g=2uw 1, p=a-
.{\:i\lj ¥=0, y=u, y=095, {viii) w=0, y =0, Y=o, y=2x;
MR} 10, 241 =0, mry=2; 1y 84 By + 30, 8,420 -8y - 3:{‘]_'
“16. S5(@+y)=). The curve appears above this line to the right, below it
on the loft, and euts it at (075..., 123...).
18. (2r+y- Hz—y1.

a3, (i}x:l,y'_—O; (i}t ga1=0, (Hi) & — 3y =1.

§122,p 200 3 (5 =%y s (1) (2 29)ly - 22 (i) (o + D)oy
{iv) ~ (o by ik + by 11 (v} {23 — 52 - Sa2) /2yl +2) 3
(vi) (y9+2xy—23:)_f{2y—2:cy——x2}; . ‘
Avii) {any~xy'3~.‘t”}f(a:2y +¥ e (vidi) {dzy — do® L 5242 (9 - 27)



bp.

L

4.

5.
12,
L4,
15,

L

18,

269-319] © ANSWERS.

465

() Bl 285 (1) - 20455 () —nfertls {@9) (1- 2801 +a3;

{v

(oity w(2n+ Y%+ 2w + 2%
(1) 2{1 —aBf(1 -+ 2P

{ii} {(u-B—;‘:A):v2+2[r50-cA}a:+{hC‘—cB)
) eNET Ty (v —afets 0E () fenit e TN T

(¢1] (Jc-2b+a)f2{2+ Bi¥,

Bxercizes XXXIIL
162 1. Py + By + 36 — 48y ~ B6=0; oo+ By=0 iz

i

a2l = +a®?; (vi) 1/2{1+wNm+a®;

YAz + Bx+ O

315. N\

(i) w2y 9% - 122 ~ 16y +50=03 w+y=T; 2 (AR ’

4
(1) 9u+ oy 1697 — 52 — 80y +89=0; B+ 4y =103 S5 $6)-
Gi7) 162 2y + 0y — 2+ 1y — 14=0; 4o -Fy=ARE; 5 FEk
[iv) 9 - Moy + 16y° - 23 86y 4 1=0; Bz 4P=T; 23 (} - 7o)

fv) 144w — 19202y + 252+ 1307 + 3]93;—16&%0@ 19z - 5y=0; 2;

(% T5)-

The eyuation represents the locus of nioint which moves s that its
distance from the point {{, D Jesqual to its distance from the line

&=

fiv) (-1, 00, a=¢. A

p=E; 13 (2, —,—1&9} 4y -+ 13 =0,

{1}, (iv) llpwalh‘\\; (ii), (iii} downwards.

2?=dmy ;‘f]-h,‘;'s 0, &); y+o=0

Let thipéint be (0, a), the Line y=0.

(UEAQ vertex, (0, 0} ; dircetrix,

e:g-, RXTJKI_, cxzigi
4. 9
e=i; SX=7.

Cd=2,/6; (B=2,/2; g:%,\fﬁ.

y+a=0.

8w - da); 2m; (Ha, 0 (9_; 0)._-

Exercises XXXIV. p- 318

(0, 1), p+i=0; () o 1, y=1; G (4 0) #+3=0;

10. y:—,?:r*—'?a:+2.
13. (ija; (ii}a—b-c+d.

Then locus is 2F =4 ; focus,

28, (20-¢ 29); y=2a.

3. o=ty SX=12; 4X=1
4, CB=3.3; Sx=9; S4=3

b=8; CS=4; OX=38; AX=}

a=5; C§=3; §4=2; SX=3% )
. oy
(A =2 in., C71=3 in. 11, é=g5-
getrix.

"The parallel through 4 to the i

e 2

13, ¢=5J2
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Exzercises XXXV. p. 332

5 4. 18 x* ?f
b N x =% 24 8 Sty =1
4 T &, (32, 2-8) is inside, othors outside.

8. The four points (f;—x—{?;, + ab )
. LY

Bt Narrt) N

17 - P (2r—g+1F¥ tr+2y-3F
7. 5~ 9. JT 1a. s T o _1T

16(30 —dy + 392 16w+ 3y 42 A ¢
13. : = A\

uB 372! v ~

14, (i) (0, 0); 2=0, y=0; 2.7, 2./05; )

G (0,005 g=0, 2=0; 2a+b), 2Ha-5. o |

(i) (1, ~2); yr2=201 w=1; 4, 243 (Iv) {0, 013 12+e;‘:0:c ¥1 64
v} (0, 0] 4xﬁ3y, s~c+4y_{), 25, 8755, . m\
(vi) (—8/3, 1/5); 24 yi1= 0, w- Oy +1=0; SlBy2./55/5.
fvii) (1, ~1); yTl A, w=1; 4, 2,3 \
{vH) (U2, -2/3) 5 3y+2'=o, D1 5, 24007
(ix} {2/8, —1}; Bw=2, y+1=0; 2.3, B\
(=) (-2/3, -1); .31,-{ 2=0, y+1 =023, 2.
15, 1724 Yowy + 1742+ 300 — 80y - 200»_0'4,\:"2
16, Hla? 4 Sday + 8y — 2607 — 3205»4,460 0; (E, 2%
22, ;i:+-z—:=1:mb ‘,:{:w'ss. z+g, I
28, If Cd=q, CB=H, P;pdmtfs are
rx,bﬁ : ub 2 _0p2 b J’{U 2:1"] ?Ja?
It wﬂl be nob\\d t.hs.h one pair of points, ab lcast, is inaginary.

so. (%% O 31, aw+bmy=0.

2, Taf ; - ':a:2 LW 1—?,{2,
az, Tx 2.72)&*?;9‘ 14— 30y +39=0; T~ y=". 88 Dotu= g g
R Exercises XXXV p. 425,

LR @) 105 (i) 6. 2. 14; 235
»Ev\lax?&-lﬁy 3605412000 e=1. 6. o=5

. Bxercises XXXVII. p. 325

1oe=f; SX =12 0K =25 2. e=l; 83X AK=]

8 e=E; SX=-9, 4 e=3%; Sx¥=18

5. OB=6.3; SL=9; §4=6. . & CA=2J6:0R=23; e=3&
7. b'_—_.‘f’_; (‘S_.___ OX =4, AX--I

8 «=3; OS=b5; SA-2; SE=

g A2 © 1o, e=Rin; b=2./3in,



pp. 322-340] ' ANSWERS: ' 46T

Exercises XXXVIIL p. 330

1. —%, 3. %, —E-‘ 3. g—%:l.
5 % 5. (-4, 2) (7, —4) are inside.
o (e Y (e T )
VIEET @iy WJ(bt - me?) NI N
When m=£ we got the asymptotes. . e. 3,21
10, »is real and finite, infinite; or imaginary, aecording as
1 N\

1 1 ¢
003‘23}?, 26_2 or 4;5_2' \J

2. (i} y+2=10, =13 6,45 (1, -2} (i) =0, y=0; 2, m,({o,‘ﬂ)

i} #r1=0, #=1; 4, 245 (1, -1 " '\§.
{iv) By+2=0, 2e=1; 5 2203 (112, -2/3). )
(v} 2e+y=0, x=2y; 4u/2 2./3; (0, 0}

i) a4y=2, y=mt1; 442 325 (12,32 \,

p §

16, at+duy + 2 - 22— By + 3=l 62 1?."%’}z-ﬁy+9=0; (3, 3}

Exercises XXXIX{ P 333,

1. (0} 5/4; () 8 in.; (i) 6 in. vz 10
4, The loeus i likewise & hyperbg:}@ Whose foci are the contres of the

given cirelea.

5. '22035‘3—35_?;2:495-(e—_-%)“aﬁd: S0t ~ 442 =63 (e=8)-

P4\

Ryercises XL. D 338.

A () 2w -Sy=0, g@‘gg:o; (i) a+y=0, v-y=0;
{

{iii} 3w — 2y =5) o2y =1; (iv) Qx-ky:q, 2z~ 11y=0.

®_U LY .
) - =T 0 N
9. w=3/3r2=0; (3, 2k 10, arte=0, ay+h=
DGBT 1) T 12. 6

18t 2y +1=0, wty-2=0; (s B
R\ -2705 3 5
NN B2+ 2y +1=0, w_oy-2=03 (} ~%) o

\ A, (2x48y-8)(x-2¢+ =22 ‘13’ y:';_'_fi

\

) 3

22. The asymptotes being the axes, the co

26. Let the given asymptote be ACA,

nstant length s the algebroic

differe ' the i hevissae of the fixed points. . .

difference of the ordinates of & t]‘::e - tan%ent, CE};,}B\n_tl;eprg::;:
D in

of oontact B, the other tangent BL. Lot AC. Jaqd gD ]Let. i

ot €, BL and ACB in B, Cut'off gp=CE. Join B0 1

parallel 1o BO, meet BEin I~ LI is the sed )

o



168 © ANALYTICAL GROMETRY. [Bx. XLL-XLyy
Exercises XLI. p. 346,

2, -36°5%, 2, (%“a 3) (%% %25) Ga “éﬁb)
a. _gﬁos&f%ﬁiﬂ@zl. 9, _?:;_a. 10, f;‘_‘

18, o+ h2pe=, 22, tan"l(—zicott?). .
aa, nz{a%ﬂ-i-bzfz):ﬁnﬂ(a"--—bz)?. T2\

30 (1) ab); (i) e- b; (iii) wx@tﬁca_b—ym@ﬁ ab=g? _ 2, \\
. a{a? - al - 12} BB - o — B G o
{iv) (“‘_'_'_ 4 At T — — ‘T)- A

{az—abﬂ’;_i’}(a*:‘-ab)*'_ {a%--ab+ 122 5. gt o \ I
Bl el . ) . { &
as, (ia,z—a)h.—'g%-_—l‘ ) asg, a:3+y~=(a,—-“'b§%

Exercises XLII, p, B335,

L -5 2. 50y=63m. 8. Jrodi.
1L (..chv’?, ﬂ:;\ﬂ). 12. e § 136, Bx. 3,
x? 1ot e O8N 1
1a. 52+%::§; c%""';:é:?- SNV (2, 2y, Tty -d=t5(x-g)
e W7 N — i h% )
16, T o b (e By
@ 4 at "t B { 17 Fratm® DT gt
AN

{Brercizes XLITL. p. 359.

L. Lot $Z, 1 8B, meet the direcirix in Z.  ZP is the tangent at B
8. Let X be the'Point.  Join Z8, and let the A7 to 8Z at S cut the conie
in £, BZP 21 are the tangents reguired.
L& Let the™Dl centro 8, rading SF=ckT , mect the Ol gn SK a8
- Jimweterin U, 0. Tet gy g7 eub the conic in P, P, KP, KF
’\(mfthe required tangents,
17,4 Tet & be focus, P tangent at P, ¢ 5 Point on the conie. »\LEt 82,
~ VAT 8P, meet PTin 7 Lot 827, the external hisector of PSQ, metit
o~ \ ) PQinZ'. 7' is the directrix, Wlleneq the vertex is ensily found.
N | |

Exercises XLIV. p- 363,

. 8. Draw §X L* the directrix, miq point A. Let AV | * §X meet Qlon
OS as diameter in ¥ fsnd ¥')." Tet S¥ mees dirx, in M. Let M7
Lrdirx. mest 0¥ in 2. p in point required. ’

. & Tet M be {he image of ¥in PP, yx » drawn perpendieular to M2,
is the dircetrix. :



pp. 346-387] ANSWERS, 460

5. Produce SY 1° PP to M so that YH=8Y. With centre rady
‘E;{L)a d“;’ﬁ_ﬂ’j’_ A 'S;} Draw 3701 {and MM"), the tangent k?;}ic G;J‘E
raw M 1T MM twmeet PPin P P is the poiut requi
WA ia the diveetrix. 1 powt required and
6. Draw 5Y 1° 'Y and produce to M so that S¥Y=¥¥. Draw NX
cdruxia. #X is the direvirix. Tet M2 [* ¥X meet PT in £
£ is the point required.
18, Drvaw AW L' given liue to mest dirx. in M. Bisect SMin ¥, YP
15 8V is the tangent reguired.
17. PP =6J10; TN=18 :

18, ¢is the reciprocal of the gradicut ab the point &, 2N
84, The join of lhe fest OF the 1™ from the focus on the tangents’is
tangent at vertex.  Whence the requived construetion. o
40. Lot the tangents be P, 08, RP. Lot QR touch the paraholoat T.
The eirele which touches P at @ and passes thropghlF will eut
the vireumeirele of the trinngle PO R ngain ab thedogus\S,  If M and

N are the images of §in two of the tengents, MNgthe directrix,

24, 3= —2¥i{p+a), a cissoid O
4 v

M
Exercises XLV, p, 873

2. Lot the tangent ZP7 mect dirx. inhWZn/Draw §P L SZ to meet
ZPim P, Lot P8, making L8 P> LPZ, meot SX L dirx. in
8. (}is mid point of 88" AN
28. (1-¢¥x.  This becomes I, whered is the semi-latus rectum of the
parabola. &Y
B0 (of - P N
36. Circlos gentres the foeisradii eqnal bo niajor axis, .
87. Circle contre seepng{fjcus; radius equals the difference of the major
axes, e i .
38, Tet join of P, (% the given points, meet the asymptote n R. Produce
2 to 7 sdithab QP =RP. Draw TC LF the asymptote. C ia the
cuntre, . .
PN Exercises XLVIL p. 378
% Qa.(t%ﬂ}‘%‘; Pimp=diz- 2P, 8 f=2J2 7. m—f(a - bife.
15. 'ng_ 1), y=2k(t - ). 18, y—tan 6z - 26 -atan’f}.
C 1800 e+ {/2m, where Dum 4 2= -+l I .
72 ' (2a, 3a), (4fa, ~5a)
28, In t+ (P mH=0. as. (a, 2a), (§a, 32) (7
4 ~\' ¢ )
» Exercises XLVIL p. 385.

\ 4 X o
2. {q—;&—b-cos 8008 ¢ cos -+ (& + 0)feos Fe—8,

B in sin Gsin ¥ g+ fllcos (- 3)}' ;
L .

i
(az - 1#-a sinsﬂ) ; (ePein?f + Fieosd) g,r‘ab.
[

N

2N

o

-— —rostd,
3

24, (a%+ 5%5) (3 — )t = (e - B2t



470 ANALYTICAL GREOMKTRY, (Bx. XLVIIL L),
Exercises XL VIIIL p. 393
i Qa-n_;

2. {1 (a*, B (i) (e, -Vm) (i) (el ety s ({iv) (—- P
3. (i) % 4+ B =1 ; (L) o®l - B’ =1 {11) 2e¥fm' + P =1 H
(v} T+8 + 2aman’ = 0,

. s H 2
4 O y-wdm=2ac-x); (i) (e~ = (- ) =0, O
e 2};2 : ’ A, ¢
A EreipeL : ¢
. o P\ e
45. tan*gb[xz-i—y?—aQ—b2j2=4w2b2(§+;‘{;=I)- . \J
26, (i) a®+ 2= 35 (i]) Ptyizgdo e "(“”5
z":“
Bxercises XLIX. p, 405.. AN\
1. “'"‘_S.A?f’?_g_j_f. . ‘}'g‘_ﬂ’?_____’f-:??_
af P T TR efd H"\';%z 52
& 0 anfat g /=1 () we o - g, 140y

(5] az -+ Ry 4 my) + byy, + g (2 1 2R 1 ) Fe—0, .
7. 2e(l-+ mg}ﬂf(kﬂ— ab)ﬁj{a—}—:?,hm-;—bmﬂj.: Ve, {Iﬁ—ab)"lj{amh Zhim+ i),

oo/

N

9. (*+yham + by + o= dHax + bg()‘f.:':, 13, §+g-_—2,
{ @
' Exorgiges L. p. 419,

3 N . 2
B A I ) L
15, k(ag - bp)fia?+ 59 , 9. tan {2_\;(1—@2)}

N\
§161, p. 430, 4, {1} :\:i."l%pcrbula.; (ii) a parabola; (i) a parabola ;
('ﬁ}\a}r{elﬁpsa.
ah+ o'
[ R
LAk AN
AN/ Exercises LI, p. 432,

10 (i) b‘l’l@ge a=4 W10+, /2, b=LNT0 - 2y
"\ major axis, (& - Di/a+1 2y -2=0,

. ™ minor axis, {x—l){,JS—l}-J—:?,(g-—QJ:O.

~;.,’\(ﬁ) Hyperbola: a?=3( /21.1), B=21 1),

AN transverse axis, (7 4+ Snf2HBr - 1) = Sy -7
'\ 4 conjugate axis, (7 - NG Y =by-17.

(Lif} Ellipse ; a=4,b=2,/2; najor axis, x— ¥=10; minor axis, 2 +¢=0
{iv}) Hypoerbola ; gz— 4, B¥=3; transverse axis, 2o+ y—1=10;
conjugate axis, @ — Zy~-I=0.
{¥) Reetangular Hyperbola: g=1, §=1 ;
transverse axis, 4x - 3y +10=0; conjugate axis, §x -4y —5=0
(vi) Parabala: latus rectmn=7~ﬁﬁfl()0 3 axis, 20(8x+y)+9=0;
tangent at vertex, 4z - 3y =217,



op. 398-451] ANSWEES. an

(vii} Ellipse: o?=45/4, }¥¥=5; major axis, x~2y+1=03
minor axis, 2w +y-3=0,
{viii) Parabola : latns rectum=4; axis, 3z -4y +5=0;
tangent at vertex, 4+ 3y - H0=0.
fix) Ayperbola: a?=~13-8, B°=n1342;
transverse axis, (58713 — 19)(x - 3)+2(413 - 2){y - 3}=0;

coujugate axis, (3513+10)(x-3) +2WNTI+ 2y -B=0. N o
@, Anellipse which passes throngh the origin and touches the lines z=a{ \J)
P\ N

and y=F, where they intersect xfe+yb=1.
a4, ab -o'h=2RkA' A
5. Directriz: 36(x —4)+77=0; Foeus: {~23/72, -31/72}.
7. Lalus rectum=4(a'sin a - ¢ cos aj™ ¢* 4
Direetrix : {x— b} sina+(y - b cosa+{a®+ a?)=0. N “\

\/

teosa+@ N
] ab g (y-£2 Ot _Be= e AT (e Wesin a — 2at - B).
Tangent ab ¢ : {y - feosa— 20t —b) = —— &N )

9. (2 - y%if(a— by=my/h. 10, mﬂ+{h@ﬁ:y=+2gx+2fy=0'

Exercises LIL p.};lsf

1. By the Recta.ngle. Theorem, TP%&?Q.}TOO = TPYTQ. T, it 1 s
3 second point on the tapgenty.therefore TPyTQ="T"PYT'Q, and
Lherefore 18 constant. RN

2. If the diameter through V, he middle point of PE, meet the curve
in £ and the tangonbdn ", then :
g2 TP e\ TO _RP*_RP.RQ RP_OR BRI
To=Tor Pt gpTyEs Ve RGTTOOK
But ™0 =8&F; thercfore T0/0R=FPRIRQ. »

O - —a%h g m
12, The point £} Whore L ASP=m/3. 30. B= g U=y
26, Seealﬁiw’ ' 27. Ree equation (6) of §166.
80, TPy + 20w =0. g1, 1230+ 85y + 24y =198,
’X’ w5 a'_z yi 10 34 _gc_u_—b}”-k‘ﬂi-’
a0 sy tar+ {5+ ) N = =
:“&"

\3
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INDEX. -
The numbers rejor i pages, SO

Ahacigsa, 3, 13,
Acceleration, 167,
Adams’s property of tangent to
conig, 359,
Angle, 28, :
botween two THnes, 65, &a.
Approximadions, sceossive, 2.
244 207 301,
to roots of equations, 271-279.
Areas, 38-42, )

~

Argument of function, 192, LN

Asymptotes, definition of, 20N
287, ™

goneral diseussion of, 280—'296‘?
of hyperbola, 333, 350, 417,
498, ’

Auxiliary eirele, 341, Sﬁ& 368, 370,
Axes, Cartosian, 434

change of, 9800,

oblique, 34, { )

of conieg, (N2 318, 327, 401

423, 453,434,

rectagiular, 13,

Axis, aupline as, 15,

Rifoeil conics, 325, 332.
‘;seetnrs of angles botween two

Circle, equati !{ﬁ&if, 108, 103
iverse Wolnts with respect to,
133 v
pole\ﬁruﬂ polar with respect to,
130
LQ;IQ‘;'SM. to, 113, 121,
ircles, coaxal, 190,

¢\ rthogonal, 131,
N vadical axis of two, 196,

Cliszoid of Diocles, 146,
Joaxal elrcles, 129,
Coincident points, 118, 257.
Coneave, 185,
Comehoid of Nicomedes, 143,
Concurrent lines, 70, T2,
Conforal conics, 424,
Conie sections, 133,
central, 318, 327, 366, 410, 421.
eonfocal, 4249,
forms of, 154, 421, 425, 431.
freedom equations of, 430.
general theoreins on, 357, 421,
425,
polar equation of, 337.
referred to tangent and normal,
424,
(See under Ellipse, Hyperbola,

a0y lines, 68, 86 Parabola.} _
8. Burnside, 117, Conjugate axis of hyperbola, 327
) | Conjugate dinmoters of ellipse,
Canonical equation of parabola, a0, 410 :
313, of general conic, 427,
of hyperhola, 370, 411
taken as axes, 414, .
Conjugate or isolated puint, 203,
299, )

=

of ellipse, 320. ’
of hyperbols, 329,
Cavdioid, 165,
Centre of eurvature, 377, 386, 439,
Centroid, 166.
Ceva’s Theorem, 03.
" Chord rule, 275,

Conjugate parallclogram, 352,
Conjugate points and Hnes with
respect to eircle, 138,
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The wumbers refer to pages.

Conjugate points and lines with
rospect Lo eonie, 392,
Conjugates, harmonic, 88, 01, 391.
Chnstraint equation, 23, 161, 217.
‘ontact of conica, 442,
Tonvex, 183
Coordinates, Cartesian, 14, 34.
oblique, 34,
polar, 37.
reatangnlar, 13,
Curvature, cenbre of, 377, 385, 439,
chord of, 439.
cirele of, 377, 43%
of ellipse, 439, 443.
of parabols, 377, 441
radins of, 377, 886, 439. -

“Curves, cquations of some Higher

Plane, 311,
Curve tracing, directions for, 304.
(See also Contents, Chaptors X.-
XVIL) '
Cusp, 200, :
of first kind or keratoid, 306.-

of second kind or rhamphoid, &

303. ~
Derivative, 280, 300. 2\
Derived curve, 255, L

tunation, 260, . R -
Diameters of conies, 4;(!3‘?20
Trireetion of Jine on\h(ié’, 2,3, 13,
15 ’

Director circleLSJ-S, 387.
Direetrix olednic, 155,
DiseriminadUN262, 425,
Distance/batwesn two points, 1d
fromem point to a line, 53, 63.
Divisiow'by zero, 280, -
D}li)}iua.tion of the cube, 147

¢ '\“E‘écentric angle, 342.
_ e

} Bueentricity of conie, 155, 434

Elimination, 181, 217.

Ellipse, area of, 342, 423.
axes of, 318, 404, 423, 433, 434,
canonical cquation-of; 820
cenlro of, 518, 421.
conjogate diameters of, 450, 410.
conjugate parallelogram of, 352.
diameters of, 321, 410"

di_l‘e('.t.ur circle of, 345, 387,
directrix of, 317,

Ellipse, cocentricity of, 317, 434,

foci of, 317, 825, 428, 434

four normals to, 382,

freedom equations of, 342, 382,

latus rectum of, 318,

normals to, 344, 366, 381.384,
408, |

orthogonal projection of circle,
34

polar equation of, 322, 337, & \~>
pole and polar with respect be,
3oL, g >
string definition of, 150,825
tangents to, 343, 358, d06; 381,
382, 406, 413, 4155
vertex of, 16IH60)
Envelope, 365, 878"
Tquation, og’r‘?tmint, 23, 161, 217.
freedomip2a; 214,
lineaf,
Eqidsion of & locus, 166,
Zofsircle, 103.
of eilipse, 320, 414.

3 ‘of hyperbols, 329, 335, 414

of line-pair, 78-87
of parabola, 313, 408,
of second degree, 81, 105, 421-

434.
of straight line, @, 44, 60_.r
Hquieonjugate diameters, 355.
Evolute, 377, 336.

. Festoon, 230,

Foeus of eonie, 1.55.

equation for, 44, -
Treedom eguations, graph of curve

given 0¥s 214,

of ponies,

of ellipse, 542 382,

of hyperbula, 335, 384

af parabola, 313,

of straight line, 23, 58.
14'11'11(=,1;i0nd,l 191.”

derived, 2ol

explicit, 198, 194. 0028
graph of irrational, 21 228,
gra h of rational, 182-218.
jmplicit, 193, 194
inverse, 193

G;adient of a gmph or carve, 28,
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The numbersg refer to pages,

Gradient of straight line, 28, 30,
Graphs, 182-311. .
of curves given by freedom
eqnations, 214,

Harmonie eonjugates, 88, 91, 391,
peneil, 90-94, 282
range, 87.01, 282,

Howothetic, 324

Hyperbola, asymptores of, 33%

337, 370, 417.419, 493,

axes of, 327, 423, 424
canonical equation of, 329,
centre of, 327, 421,
conjugate, 338,
conjugate diameters of, 371, 411,
diginetors of, 330, 336, 410.
directrix of, 326,
eceentrigity of, 825, 434,
syuilateral, 335.
foens of, 526, 332, 428, 4584,
frecdou ejuations of, 385, 384,
latus rectum of, 327.

pule and polar with respect tor
391, . N

rectangular, 335, L

string definition of, 1 N33,

tangents to, 358, 366,%384, 415,

vartex, 360, \\ i

Imaginary poinfay118, 264,
Infinile root€)et” equation 3, 281-
287, ANS

Infinity, q@m’t at, 282, 983

Inflexjong point of, 183, 233,
rw{;_;for testing, 256,

I}Jjﬁb( setion of eonic and civele,

JInverse .points, 133.

) Isolated point, 203, 200,

Joachimathal's section-aquation,
380, 428,
Latus rectum of ellipse, 318.
of hyperbola, 327.
of parabola, 313,
Limagen, 179,
Limiting points, 131,
Line, positive dirsetion of, 15.

«
normals to, 366, 384, NN
polur equation of, 331, 337. . O

Maximum, 253, 964,
Measure of segment, 1.
Menelaus’d Theorem, 95.
Minimum, 253, 964,

Newton's rale for solution of et
tions, 976,
Node, 203, 208, A
Nermal, 843, 360. (\)
{(Sez under Ellipes, Algpethola,
Ny

Parabuola.}

7%
Orders of small ghantitics, 302,
Ordinate, 13, 4077414,
Origin of coeedinates, 3.

changeoi\G8, 229,

Orthocentre; 366, 451.
Orthogimal eircles, 151.
Or%%g%éna.l projeetion of cirele,
N\ 842

{ :Pafra-ho]a., axia of, 312

eanonical eguation of, 313.

diamoters of, 303, 406-409,

directrix of, 153, 312,

eccentricity of, 153, 434,

freedom equations of, 813, 408,
431.

latus rectum of, 313, 492, 431,

3.

length of tangent to, 403.
normals to, 36G0, 377.
polar equation of, 337.
pele and polar with respect fo,
301, 304,
semi-enbical, 199,
tangents to, 358, 360, 376, 409.
vertex of, 230, 314,
Tarabolic curves, 186,
Parallel lines, 31, 51.
meet at infinity, 283,
Parameter, 73, 408,
of conchoid, 145.
Pedal, of civele, 164, 173,
of parabola, 366, _
Perpendicular, lines, 31, 51,
length of, 53, 63.
Point, at infinity, 283.
double, 298,
isolated or conjugate, 203, 289.
triple, 209, ]
{8ee Conjugate points.)
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Polar conrdinates, 37.
equation of conie, $37. :

Pole and polar with respect to
circle, 135-138,

Pole and polar with respoct to
conie, 991, 428,

Position-ratio, 5.

Power of a point, 123.

Radieal axis, 126.

Reetangle Theorem, 434,

Roots of cyuations, approXimate,.

188, 211, 271-279. .

-egnal or repeated, 119, 259,
infinity, 2810 :
theorems on, 202,

Bauls, chord, 273.
Newlon's or tangent, 276,
of false position, 273.
- of proportional parts, 273.

Seale upits, 3, 12, 24, 26.
Bection equation, J ouchimsthal’s,
389, 428,
Reotion formulae, 6, 10, 18, 21. ¢
Self-comjugate triangls, 397, 88
. Belf-polar triangle, 307, e

Aemi-cubical parabola, 1994
Small quansities, ordersab, 02

Solution of equations\J88, 2il,
oo,
chord rule for 873,
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Solation of equations, Newton's er
tangent rule for, 276.
rule of false position for, 273,
rule of proportional parts for,
273
Steps, 4.
Straiig‘g!t line, equation of, 22, 44,
graulient of, 28, 30.
positive direction of, 15,
Subnormal, 360,
Subtangent, 347, 360. A
Symmetry, 184, 185, RO
Systern of couxal el 129.
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eircles,)
of coneurrent lines, 72
of conics, 442.8.)

Tangent, definition of, 259,
{See w rele, Ellipee, Hyper-
Lols, Parobela. ) '
Tapgent rule for golution of equa-
 ions, 276.
+ Triscetion of sn angle, 145,
3 Turning points, 184, 203.
values, 184, 264.

Varia.l;}la, 191.

Velocity, 8, 19(.3_ -
Velocity-time diagram, 1B
Vertexﬁf conics, 150, 161, 312, 60

Witeh of Agnesi, 148.
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